Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Prospects for detecting supersymmetric dark matter in the Galactic halo


Dark matter is the dominant form of matter in the Universe, but its nature is unknown. It is plausibly an elementary particle, perhaps the lightest supersymmetric partner of known particle species1. In this case, annihilation of dark matter in the halo of the Milky Way should produce γ-rays at a level that may soon be observable2,3. Previous work has argued that the annihilation signal will be dominated by emission from very small clumps4,5 (perhaps smaller even than the Earth), which would be most easily detected where they cluster together in the dark matter haloes of dwarf satellite galaxies6. Here we report that such small-scale structure will, in fact, have a negligible impact on dark matter detectability. Rather, the dominant and probably most easily detectable signal will be produced by diffuse dark matter in the main halo of the Milky Way7,8. If the main halo is strongly detected, then small dark matter clumps should also be visible, but may well contain no stars, thereby confirming a key prediction of the cold dark matter model.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Annihilation luminosity as a function of radius for the diffuse dark matter component of Milky Way haloes.
Figure 2: Structural properties of dark matter subhaloes as a function of simulation resolution.
Figure 3: Radial dependence of the enclosed mass and annihilation luminosity of various halo components.
Figure 4: Observability of subhaloes.


  1. Bertone, G., Hooper, D. & Silk, J. Particle dark matter: Evidence, candidates and constraints. Phys. Rep. 405, 279–390 (2005)

    ADS  CAS  Article  Google Scholar 

  2. Gehrels, N. & Michelson, P. GLAST: The next-generation high energy gamma-ray astronomy mission. Astropart. Phys. 11, 277–282 (1999)

    ADS  Article  Google Scholar 

  3. Baltz, E. A. et al. Pre-launch estimates for GLAST sensitivity to dark matter annihilation signals. J. Cosmol. Astropart. Phys. 7 013 doi: 10.1088/1475-7516/2008/07/013 (2008)

    ADS  CAS  Article  Google Scholar 

  4. Calcáneo-Roldán, C. & Moore, B. Surface brightness of dark matter: Unique signatures of neutralino annihilation in the galactic halo. Phys. Rev. D 62, 123005 (2000)

    ADS  Article  Google Scholar 

  5. Berezinsky, V., Dokuchaev, V. & Eroshenko, Y. Small-scale clumps in the galactic halo and dark matter annihilation. Phys. Rev. D 68, 103003 (2003)

    ADS  Article  Google Scholar 

  6. Strigari, L. E., Koushiappas, S. M., Bullock, J. S. & Kaplinghat, M. Precise constraints on the dark matter content of Milky Way dwarf galaxies for gamma-ray experiments. Phys. Rev. D 75, 083526 (2007)

    ADS  Article  Google Scholar 

  7. Berezinsky, V., Bottino, A. & Mignola, G. High energy gamma-radiation from the Galactic center due to neutralino annihilation. Phys. Lett. B 325, 136–142 (1994)

    ADS  CAS  Article  Google Scholar 

  8. Bergström, L., Ullio, P. & Buckley, J. H. Observability of gamma rays from dark matter neutralino annihilations in the Milky Way halo. Astropart. Phys. 9, 137–162 (1998)

    ADS  Article  Google Scholar 

  9. Navarro, J. F., Frenk, C. S. & White, S. D. M. A universal density profile from hierarchical clustering. Astrophys. J. 490, 493–508 (1997)

    ADS  Article  Google Scholar 

  10. Strigari, L. E. et al. Redefining the missing satellites problem. Astrophys. J. 669, 676–683 (2007)

    ADS  Article  Google Scholar 

  11. Peñarrubia, J., McConnachie, A. W. & Navarro, J. F. The cold dark matter halos of local group dwarf spheroidals. Astrophys. J. 672, 904–913 (2008)

    ADS  Article  Google Scholar 

  12. Springel, V. et al. in High Performance Computing in Science and Engineering, Munich 2007 (eds Wagner, S., Steinmetz, M., Bode, A. & Brehm, M.) 93–108 (Springer, 2008)

    Google Scholar 

  13. Diemand, J. et al. Clumps and streams in the local dark matter distribution. Nature 754, 735–738 (2008)

    ADS  Article  Google Scholar 

  14. Prada, F., Klypin, A., Flix, J., Martínez, M. & Simonneau, E. Dark matter annihilation in the Milky Way galaxy: Effects of baryonic compression. Phys. Rev. Lett. 93, 241301 (2004)

    ADS  CAS  Article  Google Scholar 

  15. Mohayaee, R., Shandarin, S. & Silk, J. Dark matter caustics and the enhancement of self-annihilation flux. J. Cosmol. Astropart. Phys. 5 015 doi: 10.1088/1475-7516/2007/05/015 (2007)

    ADS  Article  Google Scholar 

  16. Hofmann, S., Schwarz, D. J. & Stöcker, H. Damping scales of neutralino cold dark matter. Phys. Rev. D 64, 083507 (2001)

    ADS  Article  Google Scholar 

  17. De Lucia, G. et al. Substructures in cold dark matter haloes. Mon. Not. R. Astron. Soc. 348, 333–344 (2004)

    ADS  CAS  Article  Google Scholar 

  18. Gao, L., White, S. D. M., Jenkins, A., Stoehr, F. & Springel, V. The subhalo populations of ΛCDM dark haloes. Mon. Not. R. Astron. Soc. 355, 819–834 (2004)

    ADS  Article  Google Scholar 

  19. Michelson, P. F. in The First GLAST Symposium (eds Ritz, S., Michelson, P. & Meegan, C. A.) 8–12 (AIP Conference Series, Vol. 921, American Institute of Physics, 2007)

    Google Scholar 

  20. Hunter, S. D. et al. EGRET observations of the diffuse gamma-ray emission from the galactic plane. Astrophys. J. 481, 205–240 (1997)

    ADS  CAS  Article  Google Scholar 

  21. Strong, A. W., Moskalenko, I. V. & Reimer, O. Diffuse galactic continuum gamma rays: A model compatible with EGRET data and cosmic-ray measurements. Astrophys. J. 613, 962–976 (2004)

    ADS  CAS  Article  Google Scholar 

  22. Aloisio, R., Blasi, P. & Olinto, A. V. Gamma-ray constraints on neutralino dark matter clumps in the galactic halo. Astrophys. J. 601, 47–53 (2004)

    ADS  CAS  Article  Google Scholar 

  23. Kuhlen, M., Diemand, J. & Madau, P. The dark matter annihilation signal from galactic substructure: Predictions for GLAST. Astrophys. J. (in the press); preprint at 〈〉.

  24. Strigari, L. E. et al. The most dark-matter-dominated galaxies: Predicted gamma-ray signals from the faintest Milky Way dwarfs. Astrophys. J. 678, 614–620 (2008)

    ADS  Article  Google Scholar 

  25. Evans, N. W., Ferrer, F. & Sarkar, S. A travel guide to the dark matter annihilation signal. Phys. Rev. D 69, 123501 (2004)

    ADS  Article  Google Scholar 

  26. Koushiappas, S. M., Zentner, A. R. & Walker, T. P. Observability of gamma rays from neutralino annihilations in the Milky Way substructure. Phys. Rev. D 69, 043501 (2004)

    ADS  Article  Google Scholar 

  27. Stoehr, F., White, S. D. M., Springel, V., Tormen, G. & Yoshida, N. Dark matter annihilation in the halo of the Milky Way. Mon. Not. R. Astron. Soc. 345, 1313–1322 (2003)

    ADS  Article  Google Scholar 

  28. Peirani, S., Mohayaee, R. & de Freitas Pacheco, J. A. Indirect search for dark matter: Prospects for GLAST. Phys. Rev. D 70, 043503 (2004)

    ADS  Article  Google Scholar 

  29. Pieri, L., Branchini, E. & Hofmann, S. Difficulty of detecting minihalos via γ rays from dark matter annihilation. Phys. Rev. Lett. 95, 211301 (2005)

    ADS  Article  Google Scholar 

  30. Springel, V., White, S. D. M., Tormen, G. & Kauffmann, G. Populating a cluster of galaxies — I. Results at z = 0. Mon. Not. R. Astron. Soc. 328, 726–750 (2001)

    ADS  Article  Google Scholar 

Download references


We thank the Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities, and the Computing Centre of the Max-Planck Society in Garching, where the simulations were carried out. C.S.F. acknowledges a Royal Society-Wolfson Research Merit award. This work was supported in part by an STFC Rolling Grant to the ICC.

Author information

Authors and Affiliations


Corresponding author

Correspondence to V. Springel.

Supplementary information

Supplementary Information

This file contains Supplementary Notes, Supplementary Figures 5-8 and Supplementary References. The signal-to-noise calculation and the treatment of the background are described in detail and all-sky maps of the different emission components are shown. (PDF 453 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Springel, V., White, S., Frenk, C. et al. Prospects for detecting supersymmetric dark matter in the Galactic halo. Nature 456, 73–76 (2008).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing