Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Temporal identity in axonal target layer recognition

Abstract

The segregation of axon and dendrite projections into distinct synaptic layers is a fundamental principle of nervous system organization and the structural basis for information processing in the brain1. Layer-specific recognition molecules that allow projecting neurons to stabilize transient contacts and initiate synaptogenesis2,3 have been identified. However, most of the neuronal cell-surface molecules critical for layer organization are expressed broadly in the developing nervous system4,5, raising the question of how these so-called permissive adhesion molecules support synaptic specificity. Here we show that the temporal expression dynamics of the zinc-finger protein sequoia is the major determinant of Drosophila photoreceptor connectivity into distinct synaptic layers. Neighbouring R8 and R7 photoreceptors show consecutive peaks of elevated sequoia expression, which correspond to their sequential target-layer innervation. Loss of sequoia in R7 leads to a projection switch into the R8 recipient layer, whereas a prolonged expression in R8 induces a redirection of their axons into the R7 layer. The sequoia-induced axon targeting is mediated through the ubiquitously expressed Cadherin-N cell adhesion molecule. Our data support a model in which recognition specificity during synaptic layer formation is generated through a temporally restricted axonal competence to respond to broadly expressed adhesion molecules. Because developing neurons innervating the same target area often project in a distinct, birth-order-dependent sequence, temporal identity seems to contain crucial information in generating not only cell type diversity during neuronal division6 but also connection diversity of projecting neurons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mutations in sequoia disrupt synaptic-layer selection of R8 and R7 axons.
Figure 2: Transient expression of sequoia in projecting R cells.
Figure 3: Temporal control of R8/R7 axon targeting by sequoia.
Figure 4: sequoia -induced temporal targeting competence is mediated via Cadherin-N.

Similar content being viewed by others

References

  1. Sanes, J. R. & Yamagata, M. Formation of lamina-specific synaptic connections. Curr. Opin. Neurobiol. 9, 79–87 (1999)

    Article  CAS  Google Scholar 

  2. Inoue, A. & Sanes, J. R. Lamina-specific connectivity in the brain: regulation by N-cadherin, neurotrophins, and glycoconjugates. Science 276, 1428–1431 (1997)

    Article  CAS  Google Scholar 

  3. Yamagata, M., Weiner, J. A. & Sanes, J. R. Sidekicks: synaptic adhesion molecules that promote lamina-specific connectivity in the retina. Cell 110, 649–660 (2002)

    Article  CAS  Google Scholar 

  4. Gil, O. D., Needleman, L. & Huntley, G. W. Developmental patterns of cadherin expression and localization in relation to compartmentalized thalamocortical terminations in rat barrel cortex. J. Comp. Neurol. 453, 372–388 (2002)

    Article  CAS  Google Scholar 

  5. Lee, C. H., Herman, T., Clandinin, T. R., Lee, R. & Zipursky, S. L. N-cadherin regulates target specificity in the Drosophila visual system. Neuron 30, 437–450 (2001)

    Article  CAS  Google Scholar 

  6. Isshiki, T., Pearson, B., Holbrook, S. & Doe, C. Q. Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell 106, 511–521 (2001)

    Article  CAS  Google Scholar 

  7. Ting, C. Y. & Lee, C. H. Visual circuit development in Drosophila. Curr. Opin. Neurobiol. 17, 65–72 (2007)

    Article  CAS  Google Scholar 

  8. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999)

    Article  CAS  Google Scholar 

  9. Brenman, J. E., Gao, F. B., Jan, L. Y. & Jan, Y. N. Sequoia, a tramtrack-related zinc finger protein, functions as a pan-neural regulator for dendrite and axon morphogenesis in Drosophila. Dev. Cell 1, 667–677 (2001)

    Article  CAS  Google Scholar 

  10. Ting, C. Y. et al. Drosophila N-cadherin functions in the first stage of the two-stage layer-selection process of R7 photoreceptor afferents. Development 132, 953–963 (2005)

    Article  CAS  Google Scholar 

  11. Tomlinson, A. & Ready, D. F. Neuronal differentiation in Drosophila ommatidium. Dev. Biol. 120, 366–376 (1987)

    Article  CAS  Google Scholar 

  12. Nern, A., Zhu, Y. & Zipursky, S. L. Local N-cadherin interactions mediate distinct steps in the targeting of lamina neurons. Neuron 58, 34–41 (2008)

    Article  CAS  Google Scholar 

  13. Huang, Z. & Kunes, S. Hedgehog, transmitted along retinal axons, triggers neurogenesis in the developing visual centers of the Drosophila brain. Cell 86, 411–422 (1996)

    Article  CAS  Google Scholar 

  14. Huang, Z., Shilo, B. Z. & Kunes, S. A retinal axon fascicle uses spitz, an EGF receptor ligand, to construct a synaptic cartridge in the brain of Drosophila. Cell 95, 693–703 (1998)

    Article  CAS  Google Scholar 

  15. Bazigou, E. et al. Anterograde Jelly belly and Alk receptor tyrosine kinase signaling mediates retinal axon targeting in Drosophila. Cell 128, 961–975 (2007)

    Article  CAS  Google Scholar 

  16. Shinza-Kameda, M., Takasu, E., Sakurai, K., Hayashi, S. & Nose, A. Regulation of layer-specific targeting by reciprocal expression of a cell adhesion molecule, capricious. Neuron 49, 205–213 (2006)

    Article  CAS  Google Scholar 

  17. Zhu, S. et al. Gradients of the Drosophila Chinmo BTB-zinc finger protein govern neuronal temporal identity. Cell 127, 409–422 (2006)

    Article  CAS  Google Scholar 

  18. Grosskortenhaus, R., Pearson, B. J., Marusich, A. & Doe, C. Q. Regulation of temporal identity transitions in Drosophila neuroblasts. Dev. Cell 8, 193–202 (2005)

    Article  CAS  Google Scholar 

  19. Kay, J. N. et al. Transient requirement for ganglion cells during assembly of retinal synaptic layers. Development 131, 1331–1342 (2004)

    Article  CAS  Google Scholar 

  20. Mumm, J. S. et al. In vivo imaging reveals dendritic targeting of laminated afferents by zebrafish retinal ganglion cells. Neuron 52, 609–621 (2006)

    Article  CAS  Google Scholar 

  21. Chotard, C., Leung, W. & Salecker, I. glial cells missing and gcm2 cell autonomously regulate both glial and neuronal development in the visual system of Drosophila. Neuron 48, 237–251 (2005)

    Article  CAS  Google Scholar 

  22. Tahayato, A. et al. Otd/Crx, a dual regulator for the specification of ommatidia subtypes in the Drosophila retina. Dev. Cell 5, 391–402 (2003)

    Article  CAS  Google Scholar 

  23. Wernet, M. F. et al. Stochastic spineless expression creates the retinal mosaic for colour vision. Nature 440, 174–180 (2006)

    Article  ADS  CAS  Google Scholar 

  24. Wernet, M. F. et al. Homothorax switches function of Drosophila photoreceptors from color to polarized light sensors. Cell 115, 267–279 (2003)

    Article  CAS  Google Scholar 

  25. Blagburn, J. M., Alexopoulos, H., Davies, J. A. & Bacon, J. P. Null mutation in shaking-B eliminates electrical, but not chemical, synapses in the Drosophila giant fiber system: a structural study. J. Comp. Neurol. 404, 449–458 (1999)

    Article  CAS  Google Scholar 

  26. Kaminker, J. S., Canon, J., Salecker, I. & Banerjee, U. Control of photoreceptor axon target choice by transcriptional repression of Runt. Nature Neurosci. 5, 746–750 (2002)

    Article  CAS  Google Scholar 

  27. McGuire, S. E., Mao, Z. & Davis, R. L. Spatiotemporal gene expression targeting with the TARGET and gene-switch systems in Drosophila. Sci. STKE 2004, pl6 (2004)

    Google Scholar 

  28. Chang, H. C. et al. Hsc70 is required for endocytosis and clathrin function in Drosophila. J. Cell Biol. 159, 477–487 (2002)

    Article  CAS  Google Scholar 

  29. Garrity, P. A. et al. Retinal axon target selection in Drosophila is regulated by a receptor protein tyrosine phosphatase. Neuron 22, 707–717 (1999)

    Article  CAS  Google Scholar 

  30. Senti, K. A. et al. Flamingo regulates R8 axon–axon and axon–target interactions in the Drosophila visual system. Curr. Biol. 13, 828–832 (2003)

    Article  CAS  Google Scholar 

  31. Banerjee, U., Renfranz, P. J., Pollock, J. A. & Benzer, S. Molecular characterization and expression of sevenless, a gene involved in neuronal pattern formation in the Drosophila eye. Cell 49, 281–291 (1987)

    Article  CAS  Google Scholar 

  32. Iwai, Y. et al. Axon patterning requires DN-cadherin, a novel neuronal adhesion receptor, in the Drosophila embryonic CNS. Neuron 19, 77–89 (1997)

    Article  CAS  Google Scholar 

  33. Fujita, S. C., Zipursky, S. L., Benzer, S., Ferrus, A. & Shotwell, S. L. Monoclonal antibodies against the Drosophila nervous system. Proc. Natl Acad. Sci. USA 79, 7929–7933 (1982)

    Article  ADS  CAS  Google Scholar 

  34. O'Neill, E. M., Rebay, I., Tjian, R. & Rubin, G. M. The activities of two Ets-related transcription factors required for Drosophila eye development are modulated by the Ras/MAPK pathway. Cell 78, 137–147 (1994)

    Article  CAS  Google Scholar 

  35. Campbell, G. et al. RK2, a glial-specific homeodomain protein required for embryonic nerve cord condensation and viability in Drosophila. Development 120, 2957–2966 (1994)

    CAS  PubMed  Google Scholar 

  36. Nolo, R., Abbott, L. A. & Bellen, H. J. Senseless, a Zn finger transcription factor, is necessary and sufficient for sensory organ development in Drosophila. Cell 102, 349–362 (2000)

    Article  CAS  Google Scholar 

  37. Kuhnlein, R. P. et al. spalt encodes an evolutionarily conserved zinc finger protein of novel structure which provides homeotic gene function in the head and tail region of the Drosophila embryo. EMBO J. 13, 168–179 (1994)

    Article  CAS  Google Scholar 

  38. Sun, Q., Bahri, S., Schmid, A., Chia, W. & Zinn, K. Receptor tyrosine phosphatases regulate axon guidance across the midline of the Drosophila embryo. Development 127, 801–812 (2000)

    CAS  PubMed  Google Scholar 

  39. Desai, C. J., Popova, E. & Zinn, K. A Drosophila receptor tyrosine phosphatase expressed in the embryonic CNS and larval optic lobes is a member of the set of proteins bearing the ‘HRP’ carbohydrate epitope. J. Neurosci. 14, 7272–7283 (1994)

    Article  CAS  Google Scholar 

  40. Hortsch, M., Bieber, A. J., Patel, N. H. & Goodman, C. S. Differential splicing generates a nervous system-specific form of Drosophila neuroglian. Neuron 4, 697–709 (1990)

    Article  CAS  Google Scholar 

  41. Usui, T. et al. Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of Frizzled. Cell 98, 585–595 (1999)

    Article  CAS  Google Scholar 

  42. Van Vactor, D. L., Cagan, R. L., Kramer, H. & Zipursky, S. L. Induction in the developing compound eye of Drosophila: multiple mechanisms restrict R7 induction to a single retinal precursor cell. Cell 67, 1145–1155 (1991)

    Article  Google Scholar 

Download references

Acknowledgements

We thank H. Bellen, J. Brenman, I. Salecker and R. Schuh for fly stocks and antibodies; D. Hawellek for the identification and analysis of seq6; and H. Aberle, S. Bogdan, C. Klämbt, A. Püschel and members of the Hummel laboratory for critical comments on the manuscript. T.H. is supported by the Deutsche Forschungsgemeinschaft (SFB629) and the EMBO Young Investigator Programme.

Author Contributions M.P. designed and performed all the experiments, and M.P. and T.H. wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Hummel.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1-S12 with Legends (PDF 3952 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrovic, M., Hummel, T. Temporal identity in axonal target layer recognition. Nature 456, 800–803 (2008). https://doi.org/10.1038/nature07407

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07407

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing