Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Generation of pluripotent stem cells from adult human testis

This article was retracted on 30 July 2014

A Corrigendum to this article was published on 20 August 2009

This article has been updated

Abstract

Human primordial germ cells and mouse neonatal and adult germline stem cells are pluripotent and show similar properties to embryonic stem cells. Here we report the successful establishment of human adult germline stem cells derived from spermatogonial cells of adult human testis. Cellular and molecular characterization of these cells revealed many similarities to human embryonic stem cells, and the germline stem cells produced teratomas after transplantation into immunodeficient mice. The human adult germline stem cells differentiated into various types of somatic cells of all three germ layers when grown under conditions used to induce the differentiation of human embryonic stem cells. We conclude that the generation of human adult germline stem cells from testicular biopsies may provide simple and non-controversial access to individual cell-based therapy without the ethical and immunological problems associated with human embryonic stem cells.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Selection of spermatogonial cells from adult human testis.
Figure 2: Generation of human adult GSCs from spermatogonial cells.
Figure 3: Characterization of the human adult GSCs in comparison to normal testis tissue.
Figure 4: Molecular profiling and epigenetics of human adult GSCs.
Figure 5: Human adult GSC-derived human teratoma formation after injection into an immunodeficient mouse.

Change history

References

  1. de Rooij, D. G. Rapid expansion of the spermatogonial stem cell tool box. Proc. Natl Acad. Sci. USA 103, 7939–7940 (2006)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Brinster, R. L. & Avarbock, M. R. Germline transmission of donor haplotype following spermatogonial transplantation. Proc. Natl Acad. Sci. USA 91, 11303–11307 (1994)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Kubota, H. & Brinster, R. L. Technology insight: In vitro culture of spermatogonial stem cells and their potential therapeutic uses. Nature Clin. Pract. Endocrinol. Metab. 2, 99–108 (2006)

    CAS  Article  Google Scholar 

  4. Matsui, Y., Zsebo, K. & Hogan, B. L. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70, 841–847 (1992)

    CAS  Article  PubMed  Google Scholar 

  5. Kanatsu-Shinohara, M. et al. Generation of pluripotent stem cells from neonatal mouse testis. Cell 119, 1001–1012 (2004)

    CAS  Article  PubMed  Google Scholar 

  6. Guan, K. et al. Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 440, 1199–1203 (2006)

    ADS  CAS  Article  PubMed  Google Scholar 

  7. Stevens, L. C. Spontaneous and experimentally induced testicular teratomas in mice. Cell Differ. 15, 69–74 (1984)

    CAS  Article  PubMed  Google Scholar 

  8. Resnick, J. L., Bixler, L. S., Cheng, L. & Donovan, P. J. Long-term proliferation of mouse primordial germ cells in culture. Nature 359, 550–551 (1992)

    ADS  CAS  Article  PubMed  Google Scholar 

  9. Turnpenny, L. et al. Evaluating human embryonic germ cells: concord and conflict as pluripotent stem cells. Stem Cells 24, 212–220 (2006)

    Article  PubMed  Google Scholar 

  10. Seandel, M. et al. Generation of functional multipotent adult stem cells from GPR125+ germline progenitors. Nature 449, 346–350 (2007)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Meng, X. et al. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287, 1489–1493 (2000)

    ADS  CAS  Article  PubMed  Google Scholar 

  12. Kanatsu-Shinohara, M. et al. Leukemia inhibitory factor enhances formation of germ cell colonies in neonatal mouse testis culture. Biol. Reprod. 76, 55–62 (2007)

    CAS  Article  PubMed  Google Scholar 

  13. Shamblott, M. J. et al. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc. Natl Acad. Sci. USA 95, 13726–13731 (1998)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Shamblott, M. J. et al. Human embryonic germ cell derivatives express a broad range of developmentally distinct markers and proliferate extensively in vitro . Proc. Natl Acad. Sci. USA 98, 113–118 (2001)

    ADS  CAS  Article  PubMed  Google Scholar 

  15. Costoya, J. A. et al. Essential role of Plzf in maintenance of spermatogonial stem cells. Nature Genet. 36, 653–659 (2004)

    CAS  Article  PubMed  Google Scholar 

  16. Shinohara, T., Avarbock, M. R. & Brinster, R. L. β1- and α6-integrin are surface markers on mouse spermatogonial stem cells. Proc. Natl Acad. Sci. USA 96, 5504–5509 (1999)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Kubota, H., Avarbock, M. R. & Brinster, R. L. Culture conditions and single growth factors affect fate determination of mouse spermatogonial stem cells. Biol. Reprod. 71, 722–731 (2004)

    CAS  Article  PubMed  Google Scholar 

  18. Stukenborg, J. B. et al. Co-culture of spermatogonia with somatic cells in a novel three-dimensional soft-agar-culture-system. J. Androl. 29, 312–329 (2007)

    Article  PubMed  Google Scholar 

  19. Hamra, F. K. et al. Defining the spermatogonial stem cell. Dev. Biol. 269, 393–410 (2004)

    CAS  Article  PubMed  Google Scholar 

  20. Wernig, M. et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448, 318–324 (2007)

    ADS  CAS  Article  PubMed  Google Scholar 

  21. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007)

    ADS  CAS  Article  PubMed  Google Scholar 

  22. Park, I. H. et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141–146 (2008)

    ADS  CAS  Article  PubMed  Google Scholar 

  23. Meissner, A., Wernig, M. & Jaenisch, R. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nature Biotechnol. 25, 1177–1181 (2007)

    CAS  Article  Google Scholar 

  24. Okita, K., Ichisaka, T. & Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature 448, 313–317 (2007)

    ADS  CAS  Article  PubMed  Google Scholar 

  25. Ginis, I. et al. Differences between human and mouse embryonic stem cells. Dev. Biol. 269, 360–380 (2004)

    CAS  Article  PubMed  Google Scholar 

  26. Schatten, G., Smith, J., Navara, C., Park, J. H. & Pedersen, R. Culture of human embryonic stem cells. Nature Methods 2, 455–463 (2005)

    CAS  Article  PubMed  Google Scholar 

  27. Maltsev, V. A., Rohwedel, J., Hescheler, J. & Wobus, A. M. Embryonic stem cells differentiate in vitro into cardiomyocytes representing sinusnodal, atrial and ventricular cell types. Mech. Dev. 44, 41–50 (1993)

    CAS  Article  PubMed  Google Scholar 

  28. Kehat, I. et al. Development of cardiomyocytes from human ES cells. Methods Enzymol. 365, 461–473 (2003)

    CAS  Article  PubMed  Google Scholar 

  29. Ringe, J., Haupl, T. & Sittinger, M. Mesenchymal stem cells for tissue engineering of bone and cartilage. Med. Klin. 98 (suppl. 2). 35–40 (2003)

    Google Scholar 

  30. Bielby, R. C., Boccaccini, A. R., Polak, J. M. & Buttery, L. D. In vitro differentiation and in vivo mineralization of osteogenic cells derived from human embryonic stem cells. Tissue Eng. 10, 1518–1525 (2004)

    CAS  Article  PubMed  Google Scholar 

  31. Lumelsky, N. et al. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292, 1389–1394 (2001)

    ADS  CAS  Article  PubMed  Google Scholar 

  32. Segev, H., Fishman, B., Ziskind, A., Shulman, M. & Itskovitz-Eldor, J. Differentiation of human embryonic stem cells into insulin-producing clusters. Stem Cells 22, 265–274 (2004)

    CAS  Article  PubMed  Google Scholar 

  33. Blyszczuk, P. et al. Embryonic stem cells differentiate into insulin-producing cells without selection of nestin-expressing cells. Int. J. Dev. Biol. 48, 1095–1104 (2004)

    CAS  Article  PubMed  Google Scholar 

  34. Pollard, S. M., Conti, L., Sun, Y., Goffredo, D. & Smith, A. Adherent neural stem (NS) cells from fetal and adult forebrain. Cereb. Cortex 16 (suppl. 1). i112–i120 (2006)

    Article  PubMed  Google Scholar 

  35. Bibel, M. et al. Differentiation of mouse embryonic stem cells into a defined neuronal lineage. Nature Neurosci. 7, 1003–1009 (2004)

    CAS  Article  PubMed  Google Scholar 

  36. Wittwer, C. T., Fillmore, G. C. & Hillyard, D. R. Automated polymerase chain reaction in capillary tubes with hot air. Nucleic Acids Res. 17, 4353–4357 (1989)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Alexander, D. et al. Transcription factor Egr-1 activates collagen expression in immortalized fibroblasts or fibrosarcoma cells. Biol. Chem. 383, 1845–1853 (2002)

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Singer, U. Mau-Holzmann and O. Rieß for karyotyping the human adult GSCs obtained from the patients’ biopsies; M. Schenk for providing support with ELISA; D. Blaurock for proofreading the manuscript; K. Kohler for discussion and encouragement; and P. Bauer for conducting the microsatellite analysis. Financial support for this research was provided by the Department of Urology, Institute of Anatomy and ZRM (University Clinic Tübingen).

Author Contributions S.C. conducted all the major experiments and wrote the manuscript; M.R. and Jö.H. were responsible for the clinical logistics, organization of the human testis biopsies and writing the ethical proposal; L.J. supervised the experimental procedures conducted in Tübingen; M.R., M.M. and Jü.H. provided mRNA and cDNA from human ES cells (H1), determined the doubling time of H1 cells and were involved in the differentiation experiments for comparing H1 with human adult GSCs; T.W. conducted part of the PCR experiments; W.A. was responsible for the real-time PCR experiments, M.B. was responsible for microarray profiling, H.-J.B. was co-responsible for FACS analysis; U.M. and H.-J.W. conducted the electron microscopy study; A.M. performed confocal microscopy; S.M. provided human ES cells; K.-D.S. and A.S. supported and advised the clinical cooperation; and T.S. initiated and supervised the entire project, conducted parts of the experiments and wrote the manuscript. A.S. and T.S. are co-senior authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Skutella.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-9 with Legends and Supplementary Tables 1-5. This file was revised on 23 October 2008 to incorporate a correction to Supplementary Figure 1 (the diagram next to the right mouse icon should read ‘teratoma fomation’ and not ‘no teratoma fomation’ as previously shown). (PDF 9498 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Conrad, S., Renninger, M., Hennenlotter, J. et al. Generation of pluripotent stem cells from adult human testis. Nature 456, 344–349 (2008). https://doi.org/10.1038/nature07404

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07404

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing