Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fault-induced seismic anisotropy by hydration in subducting oceanic plates

Abstract

The variation of elastic-wave velocities as a function of the direction of propagation through the Earth’s interior is a widely documented phenomenon called seismic anisotropy. The geometry and amount of seismic anisotropy is generally estimated by measuring shear-wave splitting, which consists of determining the polarization direction of the fast shear-wave component and the time delay between the fast and slow, orthogonally polarized, waves. In subduction zones, the teleseismic fast shear-wave component is oriented generally parallel to the strike of the trench1, although a few exceptions have been reported (Cascadia2 and restricted areas of South America3,4). The interpretation of shear-wave splitting above subduction zones has been controversial and none of the inferred models seems to be sufficiently complete to explain the entire range of anisotropic patterns registered worldwide1. Here we show that the amount and the geometry of seismic anisotropies measured in the forearc regions of subduction zones strongly depend on the preferred orientation of hydrated faults in the subducting oceanic plate. The anisotropy originates from the crystallographic preferred orientation of highly anisotropic hydrous minerals (serpentine and talc) formed along steeply dipping faults and from the larger-scale vertical layering consisting of dry and hydrated crust–mantle sections whose spacing is several times smaller than teleseismic wavelengths. Fault orientations and estimated delay times are consistent with the observed shear-wave splitting patterns in most subduction zones.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thermo-mechanical two-dimensional model of a spontaneously bending oceanic plate.
Figure 2: Schematic diagram of the anisotropic components and estimates of the delay time.
Figure 3: Schematic diagram of the tectonic and compositional structure of the slab and the inferred splitting behaviour.
Figure 4: Summary of SKS fast directions and fault set orientations.

Similar content being viewed by others

References

  1. Long, M. D. & Silver, P. The subduction zone flow field from seismic anisotropy: a global view. Science 319, 315–318 (2008)

    Article  CAS  ADS  Google Scholar 

  2. Currie, C. A., Cassidy, J. F., Hyndman, R. D. & Bostock, M. G. Shear wave anisotropy beneath the Cascadia subduction zone and western North American craton. Geophys. J. Int. 157, 341–353 (2004)

    Article  ADS  Google Scholar 

  3. Russo, R. M. & Silver, P. G. Trench-parallel flow beneath the Nazca plate from seismic anisotropy. Science 263, 1105–1111 (1994)

    Article  CAS  ADS  Google Scholar 

  4. Anderson, M. L., Zandt, G., Triep, E., Fouch, M. & Beck, S. Anisotropy and mantle flow in the Chile–Argentina subduction zone. Geophys. Res. Lett. 31 L23608 10.1029/2004GL020906 (2004)

    Article  ADS  Google Scholar 

  5. Savage, M. K. Seismic anisotropy and mantle deformation: what have we learned from shear wave splitting? Rev. Geophys. 37, 65–106 (1999)

    Article  ADS  Google Scholar 

  6. Park, J. & Levin, V. Seismic anisotropy: tracing plate dynamics in the mantle. Science 296, 485–489 (2002)

    Article  CAS  ADS  Google Scholar 

  7. Nicolas, A. & Christensen, N. I. in Composition, Structure and Dynamics of the Lithosphere–Asthenosphere System (eds Fuchs, K. & Froidevaux, C.) 111–123 (Am. Geophys. Union, 1987)

    Book  Google Scholar 

  8. Visser, K., Trampert, J., Lebedev, S. & Kennett, B. L. N. Probability of radial anisotropy in the deep mantle. Earth Planet. Sci. Lett. 270, 241–250 (2008)

    Article  CAS  ADS  Google Scholar 

  9. Backus, G. E. Long-wave elastic anisotropy produced by horizontal layering. J. Geophys. Res. 67, 4427–4440 (1962)

    Article  ADS  Google Scholar 

  10. Crampin, S. The fracture criticality of crustal rocks. Geophys. J. Int. 118, 428–438 (1994)

    Article  ADS  Google Scholar 

  11. Kneller, E. A., van Keken, E., Karato, S. & Park, J. B-type olivine fabric in the mantle wedge: insight from high-resolution non-Newtonian subduction zone models. Earth Planet. Sci. Lett. 237, 781–797 (2005)

    Article  CAS  ADS  Google Scholar 

  12. Matcham, I., Savage, M. K. & Gledhill, K. R. Distribution of seismic anisotropy in the subduction zone beneath the Wellington region, New Zealand. Geophys. J. Int. 140, 1–10 (2000)

    Article  ADS  Google Scholar 

  13. Kincaid, C. & Griffiths, R. W. Laboratory models of the thermal evolution of the mantle during rollback subduction. Nature 425, 58–62 (2003)

    Article  CAS  ADS  Google Scholar 

  14. Piromallo, C., Becker, T. W., Funiciello, F. & Faccenna, C. Three-dimensional instantaneous mantle flow induced by subduction. Geophys. Res. Lett. 33 L08304 10.1029/2005GL025390 (2006)

    Article  ADS  Google Scholar 

  15. Masson, D. G. Fault patterns at outer trench walls. Mar. Geophys. Res. 13, 209–225 (1991)

    Article  ADS  Google Scholar 

  16. Ranero, C. R., Villaseñor, A., Phipps Morgan, J. & Weinribe, W. Relationship between bend-faulting at trenches and intermediate-depth seismicity. Geochem. Geophys. Geosyst. 6 Q12002 10.1029/2005GC000997 (2005)

    Article  ADS  Google Scholar 

  17. Ranero, C. R., Phipps Morgan, J. & Reichert, C. Bending-related faulting and mantle serpentinization at the Middle America trench. Nature 425, 367–373 (2003)

    Article  CAS  ADS  Google Scholar 

  18. Peacock, S. M. Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle? Geology 29, 299–302 (2001)

    Article  CAS  ADS  Google Scholar 

  19. Omori, S., Komabayashi, T. & Maruyama, S. Dehydration and earthquakes in the subducting slab: empirical link in intermediate and deep seismic zones. Phys. Earth. Planet. Inter. 146, 297–311 (2004)

    Article  CAS  ADS  Google Scholar 

  20. MacDonald, H. & Fyfe, W. S. Rate of serpentinization in seafloor environments. Tectonophysics 116, 123–135 (1985)

    Article  CAS  ADS  Google Scholar 

  21. Jiao, W., Silver, P. G., Fei, Y. & Prewitt, T. Do intermediate- and deep-focus earthquakes occur on preexisting weak zones? An examination of Tonga subduction zone. J. Geophys. Res. 105, 28,125–28,138 (2000)

    Article  ADS  Google Scholar 

  22. Brudzinski, M. R., Thurber, C. H., Hacker, B. R. & Engdahl, E. R. Global prevalence of double Benioff zones. Science 316, 1472–1474 (2007)

    Article  CAS  ADS  Google Scholar 

  23. Grevemeyer, I., Ranero, C. R., Flueh, E. R., Klaeschen, D. & Bialas, J. Passive and active seismological study of bending-related faulting and mantle serpentinization at the Middle America trench. Earth Planet. Sci. Lett. 258, 528–542 (2007)

    Article  CAS  ADS  Google Scholar 

  24. Gee, L. S. & Jordan, T. H. Polarization anisotropy and fine-scale structure of the Eurasian upper mantle. Geophys. Res. Lett. 15, 824–827 (1988)

    Article  ADS  Google Scholar 

  25. Babuska, V., Plomerova, J., Vecsey, L., Granet, M. & Achauer, U. Seismic anisotropy of the French Massif and predisposition of Cenozoic rifting and volcanism by Variscan suture hidden in the mantle lithosphere. Tectonics 21 1029 10129/2001TC901035 (2002)

    Article  ADS  Google Scholar 

  26. Norrel, G. T., Teixell, A. & Harper, G. D. Microstructure of serpentine mylonites from the Josephine ophiolites and serpentinization in retrogressive shear zones, California. Geol. Soc. Am. Bull. 101, 673–682 (1989)

    Article  ADS  Google Scholar 

  27. Escartin, J., Hirth, G. & Evans, B. Nondilatant brittle deformation of serpentinites: implications for Mohr–Coulomb theory and the strength of faults. J. Geophys. Res. 102, 2897–2913 (1997)

    Article  ADS  Google Scholar 

  28. Hirauchi, K. Serpentinite textural evolution related to tectonically controlled solid-state intrusion along the Kurosegawa Belt, northwestern Kanto Mountains, central Japan. I. Arc 15, 156–164 (2006)

    Google Scholar 

  29. Kirby, S., Engdahl, R. & Denlinger, R. Intermediate-depth intraslab earthquakes and arc volcanism as physical expression of crustal and uppermost mantle metamorphism in subducting slabs. Geophys. Monogr. 96, 195–214 (1996)

    Google Scholar 

  30. Chaytor, J. D. & Goldfinger, C. Dziak, R. P. & Fox, C. G. Active deformation of the Gorda plate: constraining deformation models with new geophysical data. Geology 32, 353–356 (2004)

    Article  ADS  Google Scholar 

  31. Okaya, D. A. & Christensen, N. I. Anisotropic effects of non-axial seismic wave propagation in foliated crustal rocks. Geophys. Res. Lett. 29 1507 10.1029/2001GL014285 (2002)

    Article  ADS  Google Scholar 

  32. Kneller, E. A., Long, M. D. & van Keken, P. E. Olivine fabric transition and shear wave anisotropy in the Ryukyu subduction system. Earth Planet. Sci. Lett. 268, 268–282 (2008)

    Article  CAS  ADS  Google Scholar 

  33. Gerya, T. V. & Yuen, D. A. Robust characteristic method for modeling multiphase visco-elasto-plastic thermo-mechanical problems. Phys. Earth Planet. Inter. 163, 83–105 (2007)

    Article  ADS  Google Scholar 

  34. Hall, C. E., Gurnis, M., Sdrolias, M., Lavier, L. L. & Muller, R. D. Catastrophic initiation of subduction following forced convergence across fractures zones. Earth Planet. Sci. Lett. 212, 15–30 (2003)

    Article  CAS  ADS  Google Scholar 

  35. Gerya, T. V., Connolly, J. A. D. & Yuen, D. A. Why is terrestrial subduction one-sided? Geology 36, 43–46 (2008)

    Article  ADS  Google Scholar 

  36. Turcotte, D. L. & Schubert, G. Geodynamics (Cambridge Univ. Press, 2002)

    Book  Google Scholar 

  37. Ben Ismaïl, W. & Mainprice, D. A statistical view of the strength of seismic anisotropy in the upper mantle based on petrofabric studies of ophiolite and xenolith samples. Tectonophysics 296, 145–157 (1998)

    Article  ADS  Google Scholar 

  38. Ben Ismaïl, W. & Mainprice, D. An assessment of the contribution of enstatite to the upper mantle seismic anisotropy. Tectonophysics (submitted)

  39. Wada, I., Wang, K., He, J. & Hyndman, R. D. Weakening of the subduction interface and its effects on surface heat flow, slab dehydration, and mantle wedge serpentinization. J. Geophys. Res. 113 B04402 10.1029/2007JB005190 (2008)

    Article  CAS  ADS  Google Scholar 

  40. Abramson, E. H., Brown, J. M., Slutsky, L. J. & Zaug, J. The elastic constants of San Carlos olivine to 17 GPa. J. Geophys. Res. 102, 12253–12263 (1997)

    Article  ADS  Google Scholar 

  41. Isaak, D. G. High-temperature elasticity of iron-bearing olivine. J. Geophys. Res. 97, 1871–1885 (1992)

    Article  CAS  ADS  Google Scholar 

  42. Chai, M., Brown, J. M. & Slutsky, L. J. The elastic constants of an aluminous orthopyroxene to 12.5 GPa. J. Geophys. Res. 102, 14779–14785 (1977)

    Article  ADS  Google Scholar 

  43. Jackson, J. M., Sinogeikin, S. V. & Bass, J. D. Sound velocities and single-crystal elasticity of orthoenstatite to 1073K at ambient pressure. Phys. Earth Planet. Inter. 161, 1–12 (2007)

    Article  CAS  ADS  Google Scholar 

  44. Pellenq, R. J.-M et al. Atomistic calculations of the elastic properties of antigorite at upper mantle conditions: application to the seismic properties in subduction zones. Earth Planet. Sci. Lett. (submitted)

  45. Kern, H., Liu, B. & Popp, B. Relationship between anisotropy of P and S wave velocities and anisotropy of attenuation in serpentinite and amphibolite. J. Geophys. Res. 102, 3051–3065 (1997)

    Article  ADS  Google Scholar 

  46. March, A. Mathematische Theorie der Regelung nach der Korngestalt bei affiner Deformation. Z. Kristallogr. 81, 285–297 (1932)

    MATH  Google Scholar 

  47. Paterson, S. R., Yu, H. & Oertel, G. Primary and tectonic fabric intensities in mudrocks. Tectonophysics 247, 105–119 (1995)

    Article  ADS  Google Scholar 

  48. McLaughlin, R. A. A study of the differential scheme for composite materials. Int. J. Eng. Sci. 15, 237–244 (1977)

    Article  Google Scholar 

  49. Mainprice, D. Modelling the anisotropic seismic properties of partially molten rocks found at Mid-Ocean. Tectonophysics 279, 161–179 (1997)

    Article  ADS  Google Scholar 

  50. Christensen, N. I. Compressional wave velocities in possible mantle rocks to pressures of 30 kilobars. J. Geophys. Res. 79, 407–412 (1974)

    Article  ADS  Google Scholar 

  51. Müller, C. Upper mantle seismic anisotropy beneath Antarctica and the Scotia Sea region. Geophys. J. Int. 147, 105–122 (2001)

    Article  ADS  Google Scholar 

  52. Russo, R. M., Silver, P. G., Franke, M., Ambeh, W. B. & James, D. E. Shear-wave splitting in northeast Venezuela, Trinidad, and the eastern Caribbean. Phys. Earth Planet. Inter. 95, 251–275 (1996)

    Article  ADS  Google Scholar 

  53. Müller, C., Bayer, B., Eckstaller, A. & Miller, H. Mantle flow in the South Sandwich subduction environment from source-side shear wave splitting. Geophys. Res. Lett. 35 L03301 10.1029/2007GL032411 (2008)

    Article  ADS  Google Scholar 

  54. Chaytor, J. D., Goldfinger, C., Dziak, R. P. & Fox, C. G. Active deformation of the Gorda plate: constraining deformation models with new geophysical data. Geology 32, 353–356 (2004)

    Article  ADS  Google Scholar 

  55. Deplus, C. et al. Direct evidence of active deformation in the eastern Indian oceanic plate. Geology 26, 131–134 (1998)

    Article  ADS  Google Scholar 

  56. Lallemand, S. E. et al. Genetic relations between the central and southern Philippine trench and Sangihe trench. J. Geophys. Res. 103, 933–950 (1998)

    Article  ADS  Google Scholar 

  57. Masson, D. G. et al. Subduction of seamounts at the Java trench: a view with long-range sidescan sonar. Tectonophysics 185, 51–65 (1990)

    Article  ADS  Google Scholar 

  58. Billen, M. I. Seafloor morphology of the Osbourn Trough and Kermadec Trench. 〈http://resolver.caltech.edu/CaltechETD:etd-11012001-142941〉 (2001)

  59. Fujiwara, T. et al. Morphology and tectonics of the Yap trench. Mar. Geophys. Res. 21, 69–86 (2000)

    Article  Google Scholar 

  60. Kobayashi, K., Nakanishi, M., Tamaki, K. & Ogawa, Y. Outer slope faulting associated with the western Kuril and Japan trenches. Geophys. J. Int. 134, 356–372 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank M. Savage and N. I. Christensen for critical discussion, reading of the manuscript and English polishing, and Gabriele Morra and F. J. Simons helping to improve the manuscript. L.B. thanks W. Weder for his work. This work was supported by ETH Research Grant TH-12/05-3, SNF Research Grant 200021-113672/1 and 200021-116153.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuele Faccenda.

Supplementary information

Supplementary Information

This file contains Supplementary Notes, Supplementary Figures S1-S4, Supplementary Tables S1-S2 and Supplementary References (PDF 2075 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faccenda, M., Burlini, L., Gerya, T. et al. Fault-induced seismic anisotropy by hydration in subducting oceanic plates. Nature 455, 1097–1100 (2008). https://doi.org/10.1038/nature07376

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07376

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing