Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Towards uranium catalysts

Abstract

The forefront of research into the complexes of uranium reveals chemical transformations that challenge and expand our view of this unique element. Certain ligands form multiple bonds to uranium, and small, inert molecules such as nitrogen and carbon dioxide become reactive when in complex with the metal. Such complexes provide clues to the catalytic future of uranium, in which the applications of the element extend far beyond the nuclear industry. Most excitingly, the ability of uranium to use its outermost f electrons for binding ligands might enable the element to catalyse reactions that are impossible with conventional, transition-metal catalysts.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Uranium dinitrogen complexes.
Figure 2: Binding and reductive coupling of carbon monoxide.
Figure 3: Coordination and activation of carbon dioxide.
Figure 4: Azido, imido and nitrido complexes of uranium.
Figure 5: C–H bond activation with uranium.
Figure 6: Hydride and H2 reactions with uranium.
Figure 7: Oligomerization and polymerization reactions with uranium.
Figure 8: Hydroamination of alkynes with uranium.

Similar content being viewed by others

References

  1. Bart, S. C. & Meyer, K. in Structure and Bonding Vol. 127 (ed. Albrecht-Schmidtt, T. E.) 119–176 (Springer, 2008). This book chapter provides a detailed discussion of recent developments in the area of coordination chemistry and small-molecule activation with uranium.

    Google Scholar 

  2. Ephritikhine, M. The vitality of uranium molecular chemistry at the dawn of the XXIst century. Dalton Trans. 2501–2516 (2006). This paper provides an enlightening perspective on the state of synthetic uranium chemistry at the beginning of the twenty-first century.

  3. Burns, C. J. & Eisen, M. S. in The Chemistry of the Actinide and Transactinide Elements Vol. 5 (eds Morss, L. R., Edelstein, N. M. & Fuge, J.) 2911–3012 (Springer, 2006). This book chapter is a detailed review of catalysis with uranium.

    Google Scholar 

  4. Fagan, P. J., Manriquez, J. M., Maatta, E. A., Seyam, A. M. & Marks, T. J. Synthesis and properties of bis(pentamethylcyclopentadienyl) actinide hydrocarbyls and hydrides. A new class of highly reactive f-element organometallic compounds. J. Am. Chem. Soc. 103, 6650–6667 (1981).

    CAS  Google Scholar 

  5. Bruno, J. W., Duttera, M. R., Fendrick, C. M., Smith, G. M. & Marks, T. J. New stoichiometric and catalytic organometallic chemistry with actinides. C–H activation and phosphine/phosphite coordination chemistry. Inorg. Chim. Acta 94, 271–277 (1984).

    CAS  Google Scholar 

  6. He, M. Y., Xiong, G., Toscano, P. J., Burwell, R. L. & Marks, T. J. Supported organoactinides. Surface chemistry and catalytic properties of alumina-bound cyclopentadienyl and pentamethylcyclopentadienyl thorium and uranium hydrocarbyls and hydrides. J. Am. Chem. Soc. 107, 641–652 (1985).

    CAS  Google Scholar 

  7. Nolan, S. P., Porchia, M. & Marks, T. J. Organo-f-element thermochemistry. Actinide–group 14 element and actinide–transition-element bond disruption enthalpies and stoichiometric/catalytic chemical implications thereof in heterobimetallic tris(cyclopentadienyl)uranium(iv) compounds. Organometallics 10, 1450–1457 (1991).

    CAS  Google Scholar 

  8. Lin, Z. & Marks, T. J. A kinetic, mechanistic, and molecular mechanics investigation of olefin insertion into organoactinide–hydride bonds. Metal, olefin, ancillary ligand, and diastereoselection effects. J. Am. Chem. Soc. 112, 5515–5525 (1990).

    CAS  Google Scholar 

  9. Ephritikhine, M. Synthesis, structure, and reactions of hydride, borohydride, and aluminohydride compounds of the f-elements. Chem. Rev. 97, 2193–2242 (1997). This paper contains useful discussions of uranium hydride complexes and the chemistry that they engage in.

    CAS  PubMed  Google Scholar 

  10. Barnea, E. & Eisen, M. S. Organoactinides in catalysis. Coord. Chem. Rev. 250, 855–899 (2006). This review provides a detailed discussion of catalysis with uranium, emphasizing the important transformations of alkyne substrates, such as oligomerization, hydroamination and hydrosilation.

    CAS  Google Scholar 

  11. Andrea, T. & Eisen, M. S. Recent advances in organothorium and organouranium catalysis. Chem. Soc. Rev. 37, 550–567 (2008).

    CAS  PubMed  Google Scholar 

  12. Haber, F. Ammonia. German patent DE 229126 (1909).

  13. Roussel, P. & Scott, P. Complex of dinitrogen with trivalent uranium. J. Am. Chem. Soc. 120, 1070–1071 (1998).

    CAS  Google Scholar 

  14. Cloke, F. G. N. & Hitchcock, P. B. Reversible binding and reduction of dinitrogen by a uranium(iii) pentalene complex. J. Am. Chem. Soc. 124, 9352–9353 (2002).

    CAS  PubMed  Google Scholar 

  15. Odom, A. L., Arnold, P. L. & Cummins, C. C. Heterodinuclear uranium/molybdenum dinitrogen complexes. J. Am. Chem. Soc. 120, 5836–5837 (1998).

    CAS  Google Scholar 

  16. Eikey, R. A. & Abu-Omar, M. M. Nitrido and imido transition metal complexes of groups 6–8. Coord. Chem. Rev. 243, 83–124 (2003).

    CAS  Google Scholar 

  17. Korobkov, I., Gambarotta, S. & Yap, G. P. A. A highly reactive uranium complex supported by the calix[4]tetrapyrrole tetraanion affording dinitrogen cleavage, solvent deoxygenation, and polysilanol depolymerization. Angew. Chem. Int. Edn Engl. 41, 3433–3436 (2002).

    CAS  Google Scholar 

  18. MacKay, B. A. & Fryzuk, M. D. Dinitrogen coordination chemistry: on the biomimetic borderlands. Chem. Rev. 104, 385–401 (2004).

    CAS  PubMed  Google Scholar 

  19. Pool, J. A., Bernskoetter, W. H. & Chirik, P. J. On the origin of dinitrogen hydrogenation promoted by [(η5-C5Me4H)2Zr]2(µ222 -N2). J. Am. Chem. Soc. 126, 14326–14327 (2004).

    CAS  PubMed  Google Scholar 

  20. Chirik, P. J. Dinitrogen functionalization with bis(cyclopentadienyl) complexes of zirconium and hafnium. Dalton Trans. 16–25 (2007).

  21. Schrock, R. R. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Acc. Chem. Res. 38, 955–962 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Brennan, J. G., Andersen, R. A. & Robbins, J. L. Preparation of the first molecular carbon monoxide complex of uranium, (Me3SiC5H4)3UCO. J. Am. Chem. Soc. 108, 335–336 (1986).

    CAS  Google Scholar 

  23. Parry, J., Carmona, E., Coles, S. & Hursthouse, M. Synthesis and single crystal X-ray diffraction study on the first isolable carbonyl complex of an actinide, (C5Me4H)3U(CO). J. Am. Chem. Soc. 117, 2649–2650 (1995).

    CAS  Google Scholar 

  24. Sikora, D. J., Rausch, M. D., Rogers, R. D. & Atwood, J. L. New syntheses and molecular structures of the decamethylmetallocene dicarbonyls (η5-C5Me5)2M(CO)2 (M = titanium, zirconium, hafnium). J. Am. Chem. Soc. 103, 1265–1267 (1981).

    CAS  Google Scholar 

  25. Evans, W. J., Kozimor, S. A., Nyce, G. W. & Ziller, J. W. Comparative reactivity of sterically crowded nf3 (C5Me5)3Nd and (C5Me5)3U complexes with CO: formation of a nonclassical carbonium ion versus an f element metal carbonyl complex. J. Am. Chem. Soc. 125, 13831–13835 (2003).

    CAS  PubMed  Google Scholar 

  26. Cotton, F. A., Wilkinson, G., Murillo, C. A. & Bochmann, M. Advanced Inorganic Chemistry. 635–639 (Wiley, 1999).

    Google Scholar 

  27. Castro-Rodriguez, I. & Meyer, K. Carbon dioxide reduction and carbon monoxide activation employing a reactive uranium(iii) complex. J. Am. Chem. Soc. 127, 11242–11243 (2005).

    CAS  PubMed  Google Scholar 

  28. Summerscales, O. T., Cloke, F. G. N., Hitchcock, P. B., Green, J. C. & Hazari, N. Reductive cyclotrimerization of carbon monoxide to the deltate dianion by an organometallic uranium complex. Science 311, 829–831 (2006).

    ADS  CAS  PubMed  Google Scholar 

  29. Summerscales, O. T., Cloke, F. G. N., Hitchcock, P. B., Green, J. C. & Hazari, N. Reductive cyclotetramerization of CO to squarate by a U(iii) complex: the X-ray crystal structure of [U(η-C8H6{SiiPr3-1,4}2)(η-C5Me4H)]2(µ-η22-C4O4). J. Am. Chem. Soc. 128, 9602–9603 (2006). This paper describes an excellent example of CO activation with uranium and provides useful leading references.

    CAS  PubMed  Google Scholar 

  30. Weydert, M., Brennan, J. G., Andersen, R. A. & Bergman, R. G. Reactions of a uranium(iv) tertiary alkyl bond: facile ligand-assisted reduction and insertion of ethylene and carbon monoxide. Organometallics 14, 3942–3951 (1995).

    CAS  Google Scholar 

  31. Paolucci, G., Rossetto, G., Zanella, P., Yunlu, K. & Fischer, R. D. Facile insertion of carbon monoxide into the uranium–carbon and uranium–nitrogen bonds of some tris(cyclopentadienyl)uranium(iv)-alkyl and -dialkylamide derivatives. J. Organometall. Chem. 272, 363–383 (1984).

    CAS  Google Scholar 

  32. Dormond, A., Aaliti, A., Elbouadili, A. & Moise, C. Reactivity of uranium–carbon σ bonds: reactions of methyltris(hexamethyldisilylamido)uranium. J. Organometall. Chem. 329, 187–199 (1987).

    CAS  Google Scholar 

  33. Simpson, S. J. & Andersen, R. A. Actinide–carbon bonds: insertion reactions of carbon monoxide, tert-butyl isocyanide, and tert-butyl cyanide into [(Me3Si)2N]2MCH2Si(Me)2NSiMe3 . J. Am. Chem. Soc. 103, 4063–4066 (1981).

    CAS  Google Scholar 

  34. Cramer, R. E., Maynard, R. B., Paw, J. C. & Gilje, J. W. Carbon monoxide insertion into a uranium carbon double bond. The structure of (η5-C5H5)3U(η2-OCCH)P(CH3)(C6H5)2 . Organometallics 1, 869–871 (1982).

    CAS  Google Scholar 

  35. Louie, J., Gibby, J. E., Farnworth, M. V. & Tekavec, T. N. Efficient nickel-catalyzed [2 + 2 + 2] cycloaddition of CO2 and diynes. J. Am. Chem. Soc. 124, 15188–15189 (2002).

    CAS  PubMed  Google Scholar 

  36. Takimoto, M. & Mori, M. Novel catalytic CO2 incorporation reaction: nickel-catalyzed regio- and stereoselective ring-closing carboxylation of bis-1,3-dienes. J. Am. Chem. Soc. 124, 10008–10009 (2002).

    CAS  PubMed  Google Scholar 

  37. Calderazzo, F., Dell'Amico, G., Netti, R. & Pasquali, M. Dialkylcarbamato complexes of transition elements. 1. A new method for the synthesis of N,N-dialkylcarbamato and N,N-dialkyldithiocarbamato complexes of uranium(iv). Inorg. Chem. 17, 471–473 (1978).

    CAS  Google Scholar 

  38. Lescop, C., Arliguie, T., Lance, M., Nierlich, M. & Ephritikhine, M. Bispentamethylcyclopentadienyl uranium(iv) thiolate compounds. Synthesis and reactions with CO2 and CS2 . J. Organometall. Chem. 580, 137–144 (1999).

    CAS  Google Scholar 

  39. Moloy, K. G. & Marks, T. J. The insertion of carbon-dioxide into actinide alkyl and hydride bonds. Inorg. Chim. Acta 110, 127–131 (1985).

    CAS  Google Scholar 

  40. Castro-Rodriguez, I., Nakai, H., Zakharov, L. N., Rheingold, A. L. & Meyer, K. A linear, O-coordinated η1-CO2 bound to uranium. Science 305, 1757–1760 (2004).

    ADS  CAS  PubMed  Google Scholar 

  41. Harris, D. C. & Bertolucci, M. D. Symmetry and Spectroscopy: An Introduction to Vibrational and Electronic Spectroscopy (Dover, 1978).

    Google Scholar 

  42. Mindiola, D. J. Early transition-metal hydrazido complexes: masked metallanitrenes from N–N bond scission. Angew. Chem. Int. Edn Engl. 47, 1557–1559 (2008).

    CAS  Google Scholar 

  43. Thetford, R. & Mignanelli, M. The chemistry and physics of modelling nitride fuels for transmutation. J. Nucl. Mater. 320, 44–53 (2003).

    ADS  CAS  Google Scholar 

  44. Evans, W. J., Kozimor, S. A. & Ziller, J. W. Molecular octa-uranium rings with alternating nitride and azide bridges. Science 309, 1835–1838 (2005).

    ADS  CAS  PubMed  Google Scholar 

  45. Nocton, G., Pé caut, J. & Mazzanti, M. A nitrido-centered uranium azido cluster obtained from a uranium azide. Angew. Chem. Int. Edn Engl. 47, 3040–3042 (2008).

    CAS  Google Scholar 

  46. Crawford, M.-J., Ellern, A. & Mayer, P. UN21 3−: a structurally characterized binary actinide heptaazide anion. Angew. Chem. Int. Edn Engl. 44, 7874–7878 (2005).

    CAS  Google Scholar 

  47. Zi, G. et al. Preparation and reactions of base-free bis(1,2,4-tri-tert-butylcyclopentadienyl)uranium oxide, Cp”UO. Organometallics 24, 4251–4264 (2005).

    CAS  Google Scholar 

  48. Brennan, J. G. & Andersen, R. A. Electron-transfer reactions of trivalent uranium. Preparation and structure of the uranium metallocene compounds (MeC5H4)3U:NPh and [(MeC5H4)3U]2[µ-η12-PhNCO]. J. Am. Chem. Soc. 107, 514–516 (1985).

    CAS  Google Scholar 

  49. Arney, D. S. J., Burns, C. J. & Smith, D. C. Synthesis and structure of the first uranium(vi) organometallic complex. J. Am. Chem. Soc. 114, 10068–10069 (1992).

    CAS  Google Scholar 

  50. Arney, D. S. J. & Burns, C. J. Synthesis and properties of high-valent organouranium complexes containing terminal organoimido and oxo functional groups. A new class of organo-f-element complexes. J. Am. Chem. Soc. 117, 9448–9460 (1995).

    CAS  Google Scholar 

  51. Warner, B. P., Scott, B. L. & Burns, C. J. A simple preparative route to bis(imido)uranium(vi) complexes by the direct reductions of diazenes and azides. Angew. Chem. Int. Edn Engl. 37, 959–960 (1998).

    CAS  Google Scholar 

  52. Roussel, P., Boaretto, R., Kingsley, A. J., Alcock, N. W. & Scott, P. Reactivity of a triamidoamine complex of trivalent uranium. J. Chem. Soc. Dalton Trans. 1423–1428 (2002).

  53. Zalkin, A., Brennan, J. G. & Andersen, R. A. Tris[bis(trimethylsilyl)amido](trimethylsilylimido)uranium(v). Acta Crystallogr. C 44, 1553–1554 (1988).

    Google Scholar 

  54. Castro-Rodriguez, I., Olsen, K., Gantzel, P. & Meyer, K. Uranium tris-aryloxide derivatives supported by triazacyclononane: engendering a reactive uranium(iii) center with a single pocket for reactivity. J. Am. Chem. Soc. 125, 4565–4571 (2003).

    CAS  PubMed  Google Scholar 

  55. Castro-Rodriguez, I., Nakai, H. & Meyer, K. Multiple-bond metathesis mediated by sterically pressured uranium complexes. Angew. Chem. Int. Edn Engl. 45, 2389–2392 (2006). This paper describes an interesting synthetic cycle with uranium and paints a picture of the possibilities for catalysis contained in such an approach.

    CAS  Google Scholar 

  56. Hayton, T. W. et al. Synthesis of imido analogs of the uranyl ion. Science 310, 1941–1943 (2005).

    ADS  CAS  PubMed  Google Scholar 

  57. Hayton, T. W., Boncella, J. M., Scott, B. L., Batista, E. R. & Hay, P. J. Synthesis and reactivity of the imido analogues of the uranyl ion. J. Am. Chem. Soc. 128, 10549–10559 (2006).

    CAS  PubMed  Google Scholar 

  58. Hayton, T. W., Boncella, J. M., Scott, B. L. & Batista, E. R. Exchange of an imido ligand in bis(imido) complexes of uranium. J. Am. Chem. Soc. 128, 12622–12623 (2006).

    CAS  PubMed  Google Scholar 

  59. Spencer, L. P., Yang, P., Scott, B. L., Batista, E. R. & Boncella, J. M. Imido exchange in bis(imido) uranium(vi) complexes with aryl isocyanates. J. Am. Chem. Soc. 130, 2930–2931 (2008). This paper highlights new developments in the chemistry of uranyl analogues and contains useful leading references.

    CAS  PubMed  Google Scholar 

  60. Smith, G. M., Carpenter, J. D. & Marks, T. J. Intramolecular vs. intermolecular alkyl carbon–hydrogen bond activation. Complete thermodynamic and kinetic parameters for a reversible cyclometalation. J. Am. Chem. Soc. 108, 6805–6807 (1986).

    CAS  Google Scholar 

  61. Ciliberto, E. et al. Combined DV–Xα and gas-phase UV photoelectron spectroscopic investigation of the electronic structures of tetravalent titanium, zirconium, molybdenum, and thorium 1-sila-3-metallacyclobutane metallocene complexes. Organometallics 11, 1727–1737 (1992).

    CAS  Google Scholar 

  62. Evans, W. J. et al. Formation of (C5Me5)2U(EPh)Me, (C5Me5)2U(EPh)2, and (C5Me5)2U(η2-TeC6H4) from (C5Me5)2UMe2 and PhEEPh (E = S, Se, Te). Organometallics 26, 4287–4293 (2007).

    CAS  Google Scholar 

  63. Kiplinger, J. L., Morris, D. E., Scott, B. L. & Burns, C. J. Convenient synthesis, structure, and reactivity of (C5Me5)U(CH2C6H5)3: a simple strategy for the preparation of monopentamethylcyclopentadienyl uranium(IV) complexes. Organometallics 21, 5978–5982 (2002).

    CAS  Google Scholar 

  64. Pool, J. A., Scott, B. L. & Kiplinger, J. L. A new mode of reactivity for pyridine N-oxide: C–H activation with uranium(iv) and thorium(iv) bis(alkyl) complexes. J. Am. Chem. Soc. 127, 1338–1339 (2005).

    CAS  PubMed  Google Scholar 

  65. Pool, J. A., Scott, B. L. & Kiplinger, J. L. Synthesis of actinide η2-pyridyl and η2-α-picolyl complexes by carbon–hydrogen bond activation. J. Alloys Compd. 418, 178–183 (2006).

    CAS  Google Scholar 

  66. Kiplinger, J. L., Scott, B. L., Schelter, E. J. & Pool Davis Tournear, J. A. sp3 versus sp2 C–H bond activation chemistry of 2-picoline by Th(iv) and U(iv) metallocene complexes. J. Alloys Compd. 444-445, 477–482 (2007).

    CAS  Google Scholar 

  67. Lam, O. P., Feng, P. L., Heinemann, F. W., O'Connor, J. M. & Meyer, K. Charge-separation in uranium diazomethane complexes leading to C–H activation and chemical transformation. J. Am. Chem. Soc. 130, 2806–2816 (2008).

    CAS  PubMed  Google Scholar 

  68. Simpson, S. J., Turner, H. W. & Andersen, R. A. Hydrogen–deuterium exchange: perdeuteriohydridotris(hexamethyldisilylamido)thorium(iv) and -uranium(iv). J. Am. Chem. Soc. 101, 7728–7729 (1979).

    CAS  Google Scholar 

  69. Simpson, S. J., Turner, H. W. & Andersen, R. A. Preparation and hydrogen–deuterium exchange of alkyl and hydride bis(trimethylsilyl)amido derivatives of the actinide elements. Inorg. Chem. 20, 2991–2995 (1981).

    CAS  Google Scholar 

  70. Castro-Rodriguez, I. et al. Evidence for alkane coordination to an electron-rich uranium center. J. Am. Chem. Soc. 125, 15734–15735 (2003).

    CAS  PubMed  Google Scholar 

  71. Deacon, G. B., Tuong, T. D. & Franklin, G. R. Reactions of uranium hydride with some organic and organometallic compounds. Inorg. Chim. Acta 111, 193–196 (1986).

    CAS  Google Scholar 

  72. Lin, Z. & Marks, T. J. Metal, bond energy, and ancillary ligand effects on actinide-carbon σ-bond hydrogenolysis. A kinetic and mechanistic study. J. Am. Chem. Soc. 109, 7979–7985 (1987).

    CAS  Google Scholar 

  73. Lukens, W. W., Beshouri, S. M., Blosch, L. L. & Andersen, R. A. Oxidative elimination of H2 from [Cp'2U(µ-OH)]2 to form [Cp'2U(µ-O)]2, where Cp' is 1,3-(Me3C)2C5H3 or 1,3-(Me3Si)2C5H3 . J. Am. Chem. Soc. 118, 901–902 (1996).

    CAS  Google Scholar 

  74. Peters, R. G., Warner, B. P. & Burns, C. J. The catalytic reduction of azides and hydrazines using high-valent organouranium complexes. J. Am. Chem. Soc. 121, 5585–5586 (1999).

    CAS  Google Scholar 

  75. Evans, W. J. et al. Actinide hydride complexes as multielectron reductants: analogous reduction chemistry from [(C5Me5)2UH]2, [(C5Me5)2UH2]2, and [(C5Me5)2ThH2]2 . Organometallics 26, 3568–3576 (2007). This paper highlights the versatility of uranium hydrides for effecting multi-electron reductions.

    CAS  Google Scholar 

  76. Straub, T., Haskel, A. & Eisen, M. S. Organoactinide-catalyzed oligomerization of terminal acetylenes. J. Am. Chem. Soc. 117, 6364–6365 (1995).

    CAS  Google Scholar 

  77. Haskel, A., Wang, J. Q., Straub, T., Neyroud, T. G. & Eisen, M. S. Controlling the catalytic oligomerization of terminal alkynes promoted by organoactinides: a strategy to short oligomers. J. Am. Chem. Soc. 121, 3025–3034 (1999).

    CAS  Google Scholar 

  78. Haskel, A., Straub, T., Dash, A. K. & Eisen, M. S. Oligomerization and cross-oligomerization of terminal alkynes catalyzed by organoactinide complexes. J. Am. Chem. Soc. 121, 3014–3024 (1999).

    CAS  Google Scholar 

  79. Wang, J. Q., Dash, A. K., Berthet, J. C., Ephritikhine, M. & Eisen, M. S. Selective dimerization of terminal alkynes promoted by the cationic actinide compound [(Et2N)3U][BPh4]. Formation of the alkyne π-complex [(Et2N)2U(C;CtBu)(η2-HC;CtBu)][BPh4]. Organometallics 18, 2407–2409 (1999).

    CAS  Google Scholar 

  80. Wang, J. et al. Oligomerization and hydroamination of terminal alkynes promoted by the cationic organoactinide compound [(Et2N)3U][BPh4]. Chem. Eur. J. 8, 5384–5396 (2002).

    CAS  PubMed  Google Scholar 

  81. Barnea, E. et al. Catalytic coupling of terminal alkynes with isonitriles promoted by organoactinide complexes. J. Am. Chem. Soc. 126, 10860–10861 (2004).

    CAS  PubMed  Google Scholar 

  82. Wang, J., Gurevich, Y., Botoshansky, M. & Eisen, M. S. Unique σ-bond metathesis of silylalkynes promoted by an ansa-dimethylsilyl and oxo-bridged uranium metallocene. J. Am. Chem. Soc. 128, 9350–9351 (2006).

    CAS  PubMed  Google Scholar 

  83. Schrock, R. R. High-oxidation-state molybdenum and tungsten alkylidyne complexes. Acc. Chem. Res. 19, 342–348 (1986).

    CAS  Google Scholar 

  84. Barnea, E., Moradove, D., Berthet, J. C., Ephritikhine, M. & Eisen, M. S. Surprising activity of organoactinide complexes in the polymerization of cyclic mono- and diesters. Organometallics 25, 320–322 (2006).

    CAS  Google Scholar 

  85. Zi, G., Blosch, L. L., Jia, L. & Andersen, R. A. Preparation and reactions of base-free bis(1,2,4-tri-tert-butylcyclopentadienyl)uranium methylimide, Cp'2U–NMe, and related compounds. Organometallics 24, 4602–4612 (2005).

    CAS  Google Scholar 

  86. Straub, T., Frank, W., Reiss, G. J. & Eisen, M. S. Uranium(iv) bis(amido), imido and bis(acetylide) complexes: synthesis, molecular structure, solution dynamics and interconversion reactions. J. Chem. Soc. Dalton Trans. 2541–2546 (1996).

  87. Haskel, A., Straub, T. & Eisen, M. S. Organoactinide-catalyzed intermolecular hydroamination of terminal alkynes. Organometallics 15, 3773–3775 (1996).

    CAS  Google Scholar 

  88. Pohlki, F. & Doye, S. The catalytic hydroamination of alkynes. Chem. Soc. Rev. 32, 104–114 (2003).

    CAS  PubMed  Google Scholar 

  89. Stubbert, B. D., Stern, C. L. & Marks, T. J. Synthesis and catalytic characteristics of novel constrained-geometry organoactinide catalysts. The first example of actinide-mediated intramolecular hydroamination. Organometallics 22, 4836–4838 (2003).

    CAS  Google Scholar 

  90. Stubbert, B. D. & Marks, T. J. Constrained geometry organoactinides as versatile catalysts for the intramolecular hydroamination/cyclization of primary and secondary amines having diverse tethered C–C unsaturation. J. Am. Chem. Soc. 129, 4253–4271 (2007).

    CAS  PubMed  Google Scholar 

  91. Dash, A. K., Wang, J. Q. & Eisen, M. S. Catalytic hydrosilation of terminal alkynes promoted by organoactinides. Organometallics 18, 4724–4741 (1999).

    CAS  Google Scholar 

  92. Dash, A. K., Wang, J. X., Berthet, J. C., Ephritikhine, M. & Eisen, M. S. Diverse catalytic activity of the cationic actinide complex [(Et2N)3U][BPh4] in the dimerization and hydrosilylation of terminal alkynes. Characterization of the first f-element alkyne π-complex [(Et2N)2U(C;CtBu)(η2-HC;CtBu)][BPh4]. J. Organometall. Chem. 604, 83–98 (2000).

    CAS  Google Scholar 

  93. Fogg, D. E. & dos Santos, E. N. Tandem catalysis: a taxonomy and illustrative review. Coord. Chem. Rev. 248, 2365–2379 (2004).

    CAS  Google Scholar 

  94. Arnold, P. L., Patel, D., Wilson, C. & Love, J. B. Reduction and selective oxo group silylation of the uranyl dication. Nature 451, 315–317 (2008). This paper describes a recent and important development in the chemistry of uranyl compounds.

    ADS  CAS  PubMed  Google Scholar 

  95. Cottingham, P. L. & Barker, L. K. Depleted uranium as catalyst for hydrocracking shale oil. Ind. Eng. Chem. Prod. Res. Dev. 12, 41–47 (1973).

    CAS  Google Scholar 

  96. Bart, S. C. et al. Carbon dioxide activation with sterically pressured mid- and high-valent uranium complexes. J. Am. Chem. Soc. doi:10.1021/ja804263w (in the press).

Download references

Acknowledgements

We thank the National Science Foundation (grant number CHE-0724158), the US Department of Energy (grant number DE-FG02-O4ER 15537), the German Research Foundation (DFG; grant number ME-1754/2-1) and the Sonderforschungsbereich (grant number 583) for financial support. A.R.F. acknowledges Massachusetts Institute for Technology for the Alan Davison Graduate Fellowship. S.C.B. acknowledges the Alexander von Humboldt Foundation for a postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints.

Correspondence should be addressed to C.C.C. (ccummins@mit.edu).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fox, A., Bart, S., Meyer, K. et al. Towards uranium catalysts. Nature 455, 341–349 (2008). https://doi.org/10.1038/nature07372

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07372

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing