Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Natural products as inspiration for the development of asymmetric catalysis

Abstract

Biologically active natural products often contain particularly challenging structural features and functionalities in terms of synthesis. Perhaps the greatest difficulties are those caused by issues of stereochemistry. A useful strategy for synthesizing such molecules is to devise methods of bond formation that provide opportunities for using enantioselective catalysis. In using this tactic, the desire for a particular target structure ultimately drives the development of catalytic methods. New enantioselective catalytic methods contribute to a greater fundamental understanding of how bonds can be constructed and lead to valuable synthetic technologies that are useful for a variety of applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selected examples of enantioselective catalysis in total synthesis.
Figure 2: Asymmetric hydrogenation of β-enamino amides towards Januvia.
Figure 3: Enantioselective C(sp3)−C(sp3) cross-coupling towards fluvirucinine A1.
Figure 4: Asymmetric Heck cyclization towards minfiensine.
Figure 5: Amine-catalysed indole alkylation towards flustramine B.
Figure 6: Enantioselective Pictet–Spengler cyclization towards harmicine.
Figure 7: Asymmetric phase-transfer alkylation towards indacrinone.
Figure 8: Double enantioselective enolate alkylation and the synthesis of cyanthiwigin F.
Figure 9: Enantioselective TMM [3 + 2] cyclization towards marcfortine B.

Similar content being viewed by others

References

  1. Corey, E. J. & Cheng, X.-M. The Logic of Chemical Synthesis (Wiley, 1995).

    Google Scholar 

  2. Jacobsen, E. N., Pfaltz, A. & Yamamoto, H. (eds) Comprehensive Asymmetric Catalysis Vol. I–III (Springer, 2000).

    Google Scholar 

  3. Jacobsen, E. N., Pfaltz, A., Yamamoto, H. (eds) Comprehensive Asymmetric Catalysis Suppl. 1 & 2 (Springer, 2004).

    Google Scholar 

  4. Hoveyda, A. H. in Stimulating Concepts in Chemistry (eds Vögtle, F., Stoddart, J. F. & Shibasaki, M.) 145–160 (Wiley-VCH, 2000).

    Google Scholar 

  5. Trost, B. M. Asymmetric catalysis: an enabling science. Proc. Natl Acad. Sci. USA 101, 5348–5355 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Taylor, M. S. & Jacobsen, E. N. Asymmetric catalysis in complex target synthesis. Proc. Natl Acad. Sci. USA 101, 5368–5373 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Diels, O. & Alder, K. Synthesen in der Hydroaromatischen Reihe. Justus Liebigs Ann. Chem. 460, 98–122 (1928).

    CAS  Google Scholar 

  8. Stork, G., van Tamalen, E. E., Friedman, L. J. & Burgstahler, A. W. Cantharidin. A stereospecific total synthesis. J. Am. Chem. Soc. 73, 4501 (1951).

    CAS  Google Scholar 

  9. Woodward, R. B., Bader, F. E., Bickel, H., Frey, A. J. & Kierstead, R. W. The total synthesis of reserpine. J. Am. Chem. Soc. 78, 2023–2025 (1956).

    CAS  Google Scholar 

  10. Yates, P. & Eaton, P. Acceleration of the Diels–Alder reaction by aluminum chloride. J. Am. Chem. Soc. 82, 4436–4437 (1960).

    CAS  Google Scholar 

  11. Hashimoto, S.-i., Komeshima, N. & Koga, K. Asymmetric Diels–Alder reaction catalysed by chiral alkoxyaluminium dichloride. J. Chem. Soc. Chem. Commun. 437–438 (1979).

  12. Hayashi, Y. in Cycloaddition Reactions in Organic Synthesis (eds Kobayashi, S. & Jørgensen, K.) 5–55 (Wiley-VCH, 2002).

    Google Scholar 

  13. Corey, E. J. Catalytic enantioselective Diels–Alder reactions: methods, mechanistic fundamentals, pathways, and applications. Angew. Chem. Int. Edn Engl. 41, 1650–1667 (2002).

    CAS  Google Scholar 

  14. Nicolaou, K. C., Snyder, S. A., Montagnon, T. & Vassilikogiannakis, G. The Diels–Alder reaction in total synthesis. Angew. Chem. Int. Edn Engl. 41, 1668–1698 (2002).

    CAS  Google Scholar 

  15. Corey, E. J. et al. Total synthesis of prostaglandins. Synthesis of the pure dl-E1, -F1α, -F1β, -A1, and -B1 hormones. J. Am. Chem. Soc. 90, 3245–3247 (1968).

    CAS  PubMed  Google Scholar 

  16. Corey, E. J., Bakshi, R. K., Shibata, S., Chen, C.-P. & Singh, V. K. A stable and easily prepared catalyst for the enantioselective reduction of ketones. Applications to multistep syntheses. J. Am. Chem. Soc. 109, 7925–7926 (1987).

    CAS  Google Scholar 

  17. Corey, E. J & Helal, C. J. Reduction of carbonyl compounds with chiral oxazaborolidine catalysts: a new paradigm for enantioselective catalysis and a powerful new synthetic method. Angew. Chem. Int. Edn Engl. 37, 1986–2012 (1998).

    CAS  Google Scholar 

  18. Yoon, T. P. & Jacobsen, E. N. Privileged chiral catalysts. Science 229, 1691–1693 (2003).

    ADS  Google Scholar 

  19. Nájera, C. & Sansano, J. M. Catalytic asymmetric synthesis of α-amino acids. Chem. Rev. 107, 4584–4671 (2007).

    PubMed  Google Scholar 

  20. Senanayake, C. H. & Jacobsen, E. N. in Process Chemistry in the Pharmaceutical Industry (ed. Gadamasetti, K. G.) 347–368 (Marcel Dekker, 1999).

    Google Scholar 

  21. Akutagawa, S. & Tani, K. in Catalytic Asymmetric Synthesis (ed. Ojima, I.) 145–161 (Wiley-VCH, 2002).

    Google Scholar 

  22. Nugent, W. A., RajanBabu, T. V. & Burk, M. J. Beyond nature's chiral pool: enantioselective catalysis in industry. Science 259, 479–483 (1993).

    ADS  CAS  PubMed  Google Scholar 

  23. Farina, V., Reeves, J. T., Senanayake, C. H. & Song, J. J. Asymmetric synthesis of active pharmaceutical ingredients. Chem. Rev. 106, 2734–2793 (2006).

    CAS  PubMed  Google Scholar 

  24. Blaser, H.-U. & Schmidt, E. (eds) Asymmetric Catalysis on Industrial Scale: Challenges, Approaches and Solutions (Wiley-VCH, 2004).

    Google Scholar 

  25. Eder, U., Sauer, G. & Wiechert, R. New type of asymmetric cyclization to optically active steroid CD partial structures. Angew. Chem. Int. Edn Engl. 10, 496–497 (1971).

    CAS  Google Scholar 

  26. Hajos, Z. G. & Parrish, D. R. Stereocontrolled total synthesis of 19-nor steroids. J. Org. Chem. 38, 3244–3249 (1973).

    CAS  PubMed  Google Scholar 

  27. Hajos, Z. G. & Parrish, D. R. Asymmetric synthesis of bicyclic intermediates of natural product chemistry. J. Org. Chem. 39, 1615–1621 (1974).

    CAS  Google Scholar 

  28. Evans, D. A., Fitch, D. M., Smith, T. E. & Cee, V. J. Application of complex aldol reactions to the total synthesis of phorboxazole B. J. Am. Chem. Soc. 122, 10033–10046 (2000).

    CAS  Google Scholar 

  29. Palomo, C., Oiarbide, M. & García, J. M. The aldol addition reaction: an old transformation at constant rebirth. Chem. Eur. J. 8, 37–44 (2002).

    Google Scholar 

  30. Ma, J.-A. Recent developments in the catalytic asymmetric synthesis of α- and β-amino acids. Angew. Chem. Int. Edn Engl. 42, 4290–4299 (2003).

    CAS  Google Scholar 

  31. Juaristi, E. & Soloshonok, V. A. (eds) Enantioselective Synthesis of β-Amino Acids (Wiley, 2005).

    Google Scholar 

  32. Vineyard, B. D., Knowles, W. S., Sabacky, M. J., Bachman, G. L. & Weinkauff, D. J. Asymmetric hydrogenation. Rhodium chiral bisphosphine catalyst. J. Am. Chem. Soc. 99, 5946–5952 (1977).

    CAS  Google Scholar 

  33. Lubell, W. D., Kitamura, M. & Noyori, R. Enantioselective synthesis of β-amino acids based on BINAP–ruthenium(ii) catalyzed hydrogenation. Tetrahedr. Asymmetry 2, 543–554 (1991).

    CAS  Google Scholar 

  34. Drexler, H.-J. et al. Chiral β-amino acid derivatives via asymmetric hydrogenation. Org. Process Res. Dev. 7, 355–361 (2003).

    CAS  Google Scholar 

  35. Drucker, D., Easley, C. & Kirkpatrick, P. Sitagliptin. Nature Rev. Drug Discovery 6, 109–110 (2007).

    CAS  Google Scholar 

  36. Hsiao, Y. et al. Highly efficient synthesis of β-amino acid derivatives via asymmetric hydrogenation of unprotected enamines. J. Am. Chem. Soc. 126, 9918–9919 (2004). This paper describes the discovery of the rhodium-catalysed enantioselective hydrogenation of β-enamino amide and ester substrates.

    CAS  PubMed  Google Scholar 

  37. Shultz, C. S. & Krska, S. W. Unlocking the potential of asymmetric hydrogenation at Merck. Acc. Chem Res. 40, 1320–1326 (2007).

    CAS  PubMed  Google Scholar 

  38. Xu, F. et al. Mechanistic evidence for an α-oxoketene pathway in the formation of β-ketoamides/esters via Meldrum's acid adducts. J. Am. Chem. Soc. 126, 13002–13009 (2004).

    CAS  PubMed  Google Scholar 

  39. Clausen, A. M. et al. Identification of ammonium chloride as an effective promoter of the asymmetric hydrogenation of β-enamine amide. Org. Process Res. Dev. 10, 723–726 (2006). This paper details efforts to scale up the enantioselective hydrogenation of a β-enamino amide towards the industrial-scale synthesis of the type 2 diabetes treatment sitagliptin (Januvia), as well as the impact of using ammonium chloride as an additive to maintain efficiency and selectivity in this process.

    CAS  Google Scholar 

  40. Noyori, R., Kitamura, M. & Ohkuma, T. Toward efficient asymmetric hydrogenation: architectural and functional engineering of chiral molecular catalysts. Proc. Natl Acad. Sci. USA 101, 5356–5362 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Negishi, E.-i. & de Meijere, A. (eds) Handbook of Organopalladium Chemistry for Organic Synthesis Vol. 1 (Wiley, 2002).

    Google Scholar 

  42. de Meijere, A. & Diederich, F. (eds) Metal-Catalyzed Cross-Coupling Reactions Vols 1 & 2 (Wiley-VCH, 2004).

    Google Scholar 

  43. Luh, T.-Y., Leung, M.-K. & Wong, K.-T. Transition metal-catalyzed activation of aliphatic C–X bonds in carbon–carbon bond formation. Chem. Rev. 100, 3187–3204 (2000).

    CAS  PubMed  Google Scholar 

  44. Frisch, A. C. & Beller, M. Catalysts for cross-coupling reactions with non-activated alkyl halides. Angew. Chem. Int. Edn Engl. 44, 674–688 (2005).

    CAS  Google Scholar 

  45. Netherton, M. R. & Fu, G. C. in Topics in Organometallic Chemistry: Palladium in Organic Synthesis (Tsuji, J. ed.) 85–108 (Springer, 2005).

    Google Scholar 

  46. Kiso, Y., Tamao, K., Miyake, N., Yamamoto, K. & Kumada, M. Asymmetric cross-coupling reactions of sec-alkyl Grignard reagents with organic halides in the presence of a chiral phosphine–nickel complex as a catalyst. Tetrahedr. Lett. 15, 3–6 (1974).

    Google Scholar 

  47. Hayashi, T. et al. Asymmetric synthesis catalyzed by chiral ferrocenylphosphine–transition metal complexes. 2. Nickel- and palladium-catalyzed asymmetric Grignard cross-coupling. J. Am. Chem. Soc. 104, 180–186 (1982).

    CAS  Google Scholar 

  48. Fischer, C. & Fu, G. C. Asymmetric nickel-catalyzed Negishi cross-couplings of secondary α-bromo amides with organozinc reagents. J. Am. Chem. Soc. 127, 4594–4595 (2005).

    CAS  PubMed  Google Scholar 

  49. Arp, F. O. & Fu, G. C. Catalytic enantioselective Negishi reactions of racemic secondary benzylic halides. J. Am. Chem. Soc. 127, 10482–10483 (2005).

    CAS  PubMed  Google Scholar 

  50. Zhou, J. & Fu, G. C. Cross-couplings of unactivated secondary alkyl halides: room-temperature nickel-catalyzed Negishi reactions of alkyl bromides and iodides. J. Am. Chem. Soc. 125, 14726–14727 (2003).

    CAS  PubMed  Google Scholar 

  51. Son, S. & Fu, G. C. Nickel-catalyzed asymmetric Negishi cross-couplings of secondary allylic chlorides with alkylzincs. J. Am. Chem. Soc. 130, 2756–2757 (2008). This paper describes the use of two sequential nickel-catalysed asymmetric Negishi cross-coupling reactions in the formal synthesis of fluvirucinine A 1.

    CAS  PubMed  Google Scholar 

  52. Suh, Y.-G. et al. Asymmetric total synthesis of fluvirucinine A1 . Angew. Chem. Int. Edn Engl. 38, 3545–3547 (1999).

    CAS  Google Scholar 

  53. Douglas, C. J. & Overman, L. E. Catalytic asymmetric synthesis of all-carbon quaternary stereocenters. Proc. Natl Acad. Sci. USA 101, 5363–5367 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Heck, R. F. Palladium-catalyzed reactions of organic halides with olefins. Acc. Chem. Res. 12, 146–151 (1979).

    CAS  Google Scholar 

  55. Overman, L. E. Application of intramolecular Heck reactions for forming congested quaternary carbon centers in complex molecule total synthesis. Pure Appl. Chem. 66, 1423–1430 (1994).

    CAS  Google Scholar 

  56. Sato, Y., Sodeoka, M. & Shibasaki, M. Catalytic asymmetric carbon–carbon bond formation: asymmetric synthesis of cis-decalin derivatives by palladium-catalyzed cyclization of prochiral alkenyl iodides. J. Org. Chem. 54, 4738–4739 (1989).

    CAS  Google Scholar 

  57. Carpenter, N. E., Kucera, D. J. & Overman, L. E. Palladium-catalyzed polyene cyclizations of trienyl triflates. J. Org. Chem. 54, 5846–5848 (1989).

    CAS  Google Scholar 

  58. Dounay, A. B. & Overman, L. E. The asymmetric intramolecular Heck reaction in natural product total synthesis. Chem. Rev. 103, 2945–2963 (2003).

    CAS  PubMed  Google Scholar 

  59. Saxton, J. E. (ed.) Chemistry of Heterocyclic Compounds: Indoles, Part Four, The Monoterpenoid Indole Alkaloids (Wiley, 1983).

    Google Scholar 

  60. Dounay, A. B., Overman, L. E. & Wrobleski, A. D. Sequential catalytic asymmetric Heck–iminium ion cyclization: enantioselective total synthesis of the Strychnos alkaloid minfiensine. J. Am. Chem. Soc. 127, 10186–10187 (2005).

    CAS  PubMed  Google Scholar 

  61. Dounay, A. B., Humphreys, P. G., Overman, L. E. & Wrobleski, A. D. Total synthesis of the Strychnos alkaloid (+)-minfiensine: tandem enantioselective intramolecular Heck–iminium ion cyclization. J. Am. Chem. Soc. 130, 5368–5377 (2008). This paper provides a full account of the use of the palladium-catalysed enantioselective Heck reaction for total synthesis of the alkaloid minfiensine.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Kirmansjah, L. & Fu, G. C. Intramolecular Heck reactions of unactivated alkyl halides. J. Am. Chem. Soc. 129, 11340–11341 (2008).

    Google Scholar 

  63. Sundberg, R. J. Indoles (Academic, 1996).

    Google Scholar 

  64. Humphrey, G. R. & Kuethe, J. T. Practical methodologies for the synthesis of indoles. Chem. Rev. 106, 2875–2911 (2006).

    CAS  PubMed  Google Scholar 

  65. Jensen, K. B., Thorhauge, J., Hazell, R. G. & Jørgensen, K. A. Catalytic asymmetric Friedel–Crafts alkylation of β,γ-unsaturated α-ketoesters: enantioselective addition of aromatic C–H bonds to alkenes. Angew. Chem. Int. Edn Engl. 40, 160–163 (2001).

    CAS  Google Scholar 

  66. Paras, N. A. & MacMillan, D. W. C. New strategies in organic catalysis: the first enantioselective organocatalytic Friedel–Crafts alkylation. J. Am. Chem. Soc. 123, 4370–4371 (2001).

    CAS  PubMed  Google Scholar 

  67. Lelais, G. & MacMillan, D. W. C. Modern strategies in organic catalysis: the advent and development of iminium activation. Aldrichimica Acta 39, 79–87 (2006).

    CAS  Google Scholar 

  68. Erkkilä, A., Majander, I. & Pihko, P. M. Iminium catalysis. Chem. Rev. 107, 5416–5470 (2007).

    PubMed  Google Scholar 

  69. Austin, J. F. & MacMillan, D. W. C. Enantioselective organocatalytic indole alkylations. Design of a new and highly effective chiral amine for iminium catalysis. J. Am. Chem. Soc. 124, 1172–1173 (2002).

    CAS  PubMed  Google Scholar 

  70. Hino, T. & Nakagawa, M. in The Alkaloids Vol. 34 (ed. Brossi, A.) 1–75 (Academic, 1988).

    Google Scholar 

  71. Overman, L. E., Paone, D. V. & Stearns, B. A. Direct stereo- and enantiocontrolled synthesis of vicinal stereogenic quaternary carbon centers. Total syntheses of meso- and (−)-chimonanthine and (+)-calycanthine. J. Am. Chem. Soc. 121, 7702–7703 (1999).

    CAS  Google Scholar 

  72. Overman, L. E., Larrow, J. F., Stearns, B. A. & Vance, J. M. Enantioselective construction of vicinal stereogenic quaternary stereocenters by dialkylation: practical total syntheses of (+)- and meso-chimonanthine. Angew. Chem. Int. Edn Engl. 39, 213–215 (2000).

    CAS  Google Scholar 

  73. Depew, K. M. et al. Total synthesis of 5-N-acetylardeemin and amauromine: Practical routes to potential MDR reversal agents. J. Am. Chem. Soc. 121, 11953–11963 (1999).

    CAS  Google Scholar 

  74. Austin, J. F., Kim, S.-G., Sinz, C. J., Xiao, W.-J. & MacMillan, D. W. C. Enantioselective organocatalytic construction of pyrroloindolines by a cascade addition-cyclization strategy: synthesis of (−)-flustramine B. Proc. Natl Acad. Sci. USA 101, 5482–5487 (2004). This paper describes the use of imidazolidinone catalysts for enantioselective Friedel–Crafts reactions with indole nucleophiles for the synthesis of the potassium-channel blocker flustramine B.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pictet, A. & Spengler, T. Über die Bildung von Isochinolin-derivaten durch Einwirkung von Methylal auf Phenyl-äthylamin, Phenyl-alanin und Tyrosin. Ber. Dtsch. Chem. Ges. 44, 2030–2036 (1911).

    CAS  Google Scholar 

  76. Cox, E. D. & Cook, J. M. The Pictet–Spengler condensation: a new direction for an old reaction. Chem. Rev. 95, 1797–1842 (1995).

    CAS  Google Scholar 

  77. Allin, S. M., Gaskell, S. N., Elsegood, M. R. J. & Martin, W. P. A new asymmetric synthesis of the natural enantiomer of the indolizidino[8,7-b]indole alkaloid (+)-harmicine. Tetrahedr. Lett. 48, 5669–5671 (2007).

    CAS  Google Scholar 

  78. Taylor, M. S. & Jacobsen, E. N. Highly enantioselective catalytic acyl-Pictet–Spengler reactions. J. Am. Chem. Soc. 126, 10558–10559 (2004).

    CAS  PubMed  Google Scholar 

  79. Seayad, J., Seayad, A. M. & List, B. Catalytic asymmetric Pictet–Spengler reaction. J. Am. Chem. Soc. 128, 1086–1087 (2006).

    CAS  PubMed  Google Scholar 

  80. Wanner, M. J., van der Haas, R. N. S., de Cuba, K. R., van Maarseveen, J. H. & Hiemstra, H. Catalytic asymmetric Pictet–Spengler reactions via sulfenyliminium ions. Angew. Chem. Int. Edn Engl. 46, 7485–7487 (2007).

    CAS  Google Scholar 

  81. Raheem, I. T., Thiara, P. S., Peterson, E. A. & Jacobsen, E. N. Enantioselective Pictet–Spengler-type cyclizations of hydroxylactams: H-bond donor catalysis by anion binding. J. Am. Chem. Soc. 129, 13404–13405 (2007). This paper describes development of the thiourea-catalysed enantioselective Pictet–Spengler-type cyclization reaction used in the synthesis of the compound harmicine, which is active against leishmaniasis.

    CAS  PubMed  Google Scholar 

  82. Raheem, I. T., Thiara, P. S. & Jacobsen, E. N. Regio- and enantioselective catalytic cyclization of pyrroles onto N-acyliminium ions. Org. Lett. 10, 1577–1580 (2008).

    CAS  PubMed  Google Scholar 

  83. Reisman, S. E., Doyle, A. G. & Jacobsen, E. N. Enantioselective thiourea-catalyzed additions to oxocarbenium ions. J. Am. Chem. Soc. 130, 7198–7199 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Dolling, U.-H., Davis, P. & Grabowski, E. J. J. Efficient catalytic asymmetric alkylations. 1. Enantioselective synthesis of (+)-indacrinone via chiral phase-transfer catalysis. J. Am. Chem. Soc. 106, 446–447 (1984). This paper describes the use of cinchoninium catalysts for enantioselective enolate alkylation towards synthesizing the diuretic indacrinone.

    CAS  Google Scholar 

  85. Hughes, D. L., Dolling, U.-H., Ryan, K. M., Schoenewaldt, E. F. & Grabowski, E. J. J. Efficient catalytic asymmetric alkylations. 3. A kinetic and mechanistic study of the enantioselective phase-transfer methylation of 6,7-dichloro-5-methoxy-2-phenyl-1-indanone. J. Org. Chem. 52, 4745–4752 (1987).

    CAS  Google Scholar 

  86. Maruoka, K. (ed.) Asymmetric Phase Transfer Catalysis (Wiley-VCH, 2008).

    Google Scholar 

  87. Enquist, J. A. Jr & Stoltz, B. M. The total synthesis of (−)-cyanthiwigin F by means of double catalytic enantioselective alkylation. Nature 453, 1228–1231 (2008). This paper details the use of palladium-catalysed enantioselective enolate alkylation for the total synthesis of the marine natural product cyanthiwigin F.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mohr, J. T. & Stoltz, B. M. Enantioselective Tsuji allylations. Chem. Asian J. 2, 1476–1491 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Behenna, D. C. & Stoltz, B. M. The enantioselective Tsuji allylation. J. Am. Chem. Soc. 126, 15044–15045 (2004).

    CAS  PubMed  Google Scholar 

  90. Mohr, J. T., Behenna, D. C., Harned, A. M. & Stoltz, B. M. Deracemization of quaternary stereocenters by Pd-catalyzed enantioconvergenent decarboxylative allylation of racemic β-ketoesters. Angew. Chem. Int. Edn Engl. 44, 6924–6927 (2005).

    CAS  Google Scholar 

  91. Mohr, J. T., Ebner, D. C. & Stoltz, B. M. Catalytic enantioselective stereoablative reactions: an unexploited approach to enantioselective catalysis. Org. Biomol. Chem. 5, 3571–3576 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Yamago, S. & Nakamura, E. [3 + 2] Cycloaddition of trimethylenemethane and its synthetic equivalents. Org. React. 61, 1–217 (2002).

    CAS  Google Scholar 

  93. Trost, B. M. & Chan, D. M. T. New conjunctive reagents. 2-Acetoxymethyl-3-allyltrimethylsilane for methylenecyclopentane annulations catalyzed by palladium(0). J. Am. Chem. Soc. 101, 6429–6432 (1979).

    CAS  Google Scholar 

  94. Trost, B. M. & Chan, D. M. T. 2-Acetoxymethyl-3-allyltrimethylsilane and palladium(0): a source of trimethylenemethane–palladium complex? J. Am. Chem. Soc. 101, 6432–6433 (1979).

    CAS  Google Scholar 

  95. Trost, B. M., Cramer, N. & Bernsmann, H. Concise total synthesis of (±)-marcfortine B. J. Am. Chem. Soc. 129, 3086–3087 (2007). This paper describes the synthetic route to (±)-marcfortine B.

    CAS  PubMed  Google Scholar 

  96. Le Marquand, P. & Tam, W. Enantioselective palladium-catalyzed trimethylenemethane [3 + 2] cycloadditions. Angew. Chem. Int. Edn Engl. 47, 2926–2928 (2008).

    CAS  Google Scholar 

  97. Yamamoto, A., Ito, Y. & Hayashi, T. Asymmetric [3 + 2] cycloaddition of 2-(sulfonylmethyl)-2-propenyl carbonate catalyzed by chiral ferrocenylphosphine–palladium complexes. Tetrahedr. Lett. 30, 375–378 (1989).

    CAS  Google Scholar 

  98. Trost, B. M., Stambuli, J. P., Silverman, S. M. & Schwörer, W. Palladium-catalyzed asymmetric [3 + 2] trimethylenemethane cycloaddition reactions. J. Am. Chem. Soc. 128, 13328–13329 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Trost, B. M., Cramer, N. & Silverman, S. M. Enantioselective construction of spirocyclic oxindolic cyclopentanes by palladium-catalyzed trimethylenemethane [3 + 2]-cycloaddition. J. Am. Chem. Soc. 129, 12396–12397 (2007). This paper describes palladium-catalysed enantioselective TMM [3 +2]-cycloaddition with oxindoles, which might provide an enantioselective route to marcfortine B.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Trost, B. M., Silverman, S. M. & Stambuli, J. P. Palladium-catalyzed asymmetric [3 + 2] cycloaddition of trimethylenemethane with imines. J. Am. Chem. Soc. 129, 12398–12399 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the National Institute of General Medical Sciences (grant number R01GM080269-01), Eli Lilly (which provided predoctoral fellowships to J.T.M. and M.R.K.), Amgen, Abbott Laboratories, Boehringer Ingelheim, Merck, Bristol–Myers Squibb and the California Institute of Technology for financial support.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints.

Correspondence should be addressed to B.M.S. (stoltz@caltech.edu).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohr, J., Krout, M. & Stoltz, B. Natural products as inspiration for the development of asymmetric catalysis. Nature 455, 323–332 (2008). https://doi.org/10.1038/nature07370

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07370

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing