Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The advent and development of organocatalysis


The use of small organic molecules as catalysts has been known for more than a century. But only in the past decade has organocatalysis become a thriving area of general concepts and widely applicable asymmetric reactions. Here I present my opinion on why the field of organocatalysis has blossomed so dramatically over the past decade.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: An explosion of interest.
Figure 2: Typical organocatalysts and the advantages of using organocatalysts.


  1. Berkessel, A. & Groeger, H. Asymmetric Organocatalysis: from Biomimetic Concepts to Applications in Asymmetric Synthesis (Wiley-VCH, 2005).

    Book  Google Scholar 

  2. Seebach, D. Organic synthesis — where now? Angew. Chem. Int. Edn Engl. 29, 1320–1367 (1990).

    Article  Google Scholar 

  3. Hajos, Z. G. & Parrish, D. R. Asymmetric synthesis of optically active polycyclic organic compounds. German patent DE 2102623 (1971).

  4. Eder, U., Sauer, G. R. & Wiechert, R. Optically active 1,5–indanone and 1,6–naphthalenedione derivatives. German patent DE 2014757 (1971).

  5. Hajos, Z. G. & Parrish, D. R. Asymmetric synthesis of bicyclic intermediates of natural product chemistry. J. Org. Chem. 39, 1615–1621 (1974).

    CAS  Article  Google Scholar 

  6. Tu, Y., Wang, Z. & Shi, Y. An efficient asymmetric epoxidation for trans–olefins mediated by a fructose derived ketone. J. Am. Chem. Soc. 118, 9806–9807 (1996).

    CAS  Article  Google Scholar 

  7. Denmark, S. E., Wu, Z., Crudden, C. & Matsuhashi, H. Catalytic epoxidation of alkenes with oxone. 2. Fluoro ketones. J. Org. Chem. 62, 8288–8289 (1997).

    CAS  Article  Google Scholar 

  8. Yang, D. et al. A C2 symmetric chiral ketone for catalytic asymmetric epoxidation of unfunctionalized olefins. J. Am. Chem. Soc. 118, 491–492 (1996).

    CAS  Article  Google Scholar 

  9. Sigman, M. & Jacobsen, E. N. Schiff base catalysts for the asymmetric Strecker reaction identified and optimized from parallel synthetic libraries. J. Am. Chem. Soc. 120, 4901–4902 (1998).

    CAS  Article  Google Scholar 

  10. Corey, E. J. & Grogan, M. J. Enantioselective synthesis of α–amino nitriles from N-benzhydryl imines and HCN with a chiral bicyclic guanidine as catalyst. Org. Lett. 1, 157–160 (1999).

    CAS  Article  Google Scholar 

  11. Miller, S. J. et al. Kinetic resolution of alcohols catalyzed by tripeptides containing the N–alkylimidazole substructure. J. Am. Chem. Soc. 120, 1629–1630 (1998).

    CAS  Article  Google Scholar 

  12. List, B., Lerner, R. A. & Barbas, C. F. III. Proline-catalyzed direct asymmetric aldol reactions. J. Am. Chem. Soc. 122, 2395–2396 (2000).

    CAS  Article  Google Scholar 

  13. Ahrendt, K. A., Borths, C. J. & MacMillan, D. W. C. New strategies for organic catalysis: the first highly enantioselective organocatalytic Diels–Alder reaction. J. Am. Chem. Soc. 122, 4243–4244 (2000).

    CAS  Article  Google Scholar 

  14. King, H. D. et al. Enantioselective synthesis of a highly potent selective serotonin reuptake inhibitor. An application of imidazolidinone catalysis to the alkylation of indoles with an α,β-disubstituted α,β-unsaturated aldehyde. Org. Lett. 7, 3437–3440 (2005).

    CAS  Article  Google Scholar 

  15. List, B. The direct catalytic asymmetric three-component Mannich reaction. J. Am. Chem. Soc. 122, 9336–9337 (2000).

    CAS  Article  Google Scholar 

  16. Wenzel, A. G. & Jacobsen, E. N. Asymmetric catalytic Mannich reactions catalyzed by urea derivatives: enantioselective synthesis of β–aryl–β–amino acids. J. Am. Chem. Soc. 124, 12964–12965 (2002).

    CAS  Article  Google Scholar 

  17. Mukherjee, S., Yang, J. W., Hoffmann, S. & List, B. Asymmetric enamine catalysis. Chem. Rev. 107, 5471–5569 (2007).

    CAS  Article  Google Scholar 

  18. Hiemstra, H. & Wynberg, H. Addition of aromatic thiols to conjugated cycloalkenones, catalyzed by chrial β–hydroxy amines. A mechanistic study on homogeneous catalytic asymmetric synthesis. J. Am. Chem. Soc. 103, 417–430 (1981).

    CAS  Article  Google Scholar 

  19. Oku, J. I. & Inoue, S. Asymmetric cyanohydrin synthesis catalyzed by a synthetic cyclic dipeptide. J. Chem. Soc. Chem. Commun. 229–230 (1981).

  20. Dolling, U. H., Davis, P. & Grabowski, E. J. J. Efficient catalytic asymmetric alkylations. 1. Enantioselective synthesis of (+)–indacrinone via chiral phase-transfer catalysis. J. Am. Chem. Soc. 106, 446–447 (1984).

    CAS  Article  Google Scholar 

  21. Doyle, A. G. & Jacobsen, E. N. Small-molecule H-bond donors in asymmetric catalysis. Chem. Rev. 107, 5713–5743 (2007).

    CAS  Article  Google Scholar 

  22. Lelais, G. & MacMillan, D. W. C. Modern strategies in organic catalysis: the advent and development of iminium activation. Aldrichim. Acta 39, 79–87 (2006).

    CAS  Google Scholar 

  23. Narasaka, K., Okauchi, T., Tanaka, T. & Murakami, M. Generation of cation radicals from enamines and their reactions with olefins. Chem. Lett. 92, 2099–2102 (1992).

    Article  Google Scholar 

  24. Beeson, T. D., Mastracchio, A., Hong, J., Ashton, K. & MacMillan, D. W. C. Enantioselective organocatalysis using SOMO activation. Science, 316, 582–585 (2007).

    ADS  CAS  Article  Google Scholar 

  25. Jang, H., Hong, J. & MacMillan, D. W. C. Enantioselective organocatalytic singly occupied molecular orbital activation: the enantioselective α–enolation of aldehydes. J. Am. Chem. Soc. 129, 7004–7005 (2007).

    CAS  Article  Google Scholar 

  26. Kim, H. & MacMillan, D. W. C. Enantioselective organo–SOMO catalysis: the α–vinylation of aldehydes. J. Am. Chem. Soc. 130, 398–399 (2008).

    CAS  Article  Google Scholar 

  27. Raheem, I., Thiara, P. S., Peterson, E. A. & Jacobsen, E. N. Enantioselective Pictet–Spengler-type cyclizations of hydroxylactams: H-bond donor catalysis by anion binding. J. Am. Chem. Soc. 129, 13404–13405 (2007).

    CAS  Article  Google Scholar 

  28. Reisman, S. E., Doyle, A. G. & Jacobsen, E. N. Enantioselective thiourea-catalyzed additions to oxocarbenium ions. J. Am. Chem. Soc. 130, 7198–7199 (2008).

    CAS  Article  Google Scholar 

  29. Huang, Y., Walji, A. M., Larsen, C. H. & MacMillan, D. W. C. Enantioselective organo-cascade catalysis. J. Am. Chem. Soc. 127, 15051–15053 (2005).

    CAS  Article  Google Scholar 

  30. Enders, D., Grondal, C. & Huttl, M. R. M. Asymmetric organocatalytic domino reactions. Angew. Chem. Int. Edn Engl. 46, 1570–1581 (2007).

    CAS  Article  Google Scholar 

Download references


I thank the National Institute of General Medical Sciences (grant number R01 GM078201-01-01) for financial support, and Merck Research Laboratories and Bristol-Myers Squibb for gifts. I also thank H. Kim, R. Knowles, D. Carerra and J. Van Humbeck for their help in the preparation of the manuscript.

Author information

Authors and Affiliations


Ethics declarations

Competing interests

The author declares no competing financial interests.

Additional information

Reprints and permissions information is available at

Correspondence should be addressed to the author (

Rights and permissions

Reprints and Permissions

About this article

Cite this article

MacMillan, D. The advent and development of organocatalysis. Nature 455, 304–308 (2008).

Download citation

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing