Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The ion pathway through the opened Na+,K+-ATPase pump

Abstract

P-type ATPases pump ions across membranes, generating steep electrochemical gradients that are essential for the function of all cells. Access to the ion-binding sites within the pumps alternates between the two sides of the membrane1 to avoid the dissipation of the gradients that would occur during simultaneous access. In Na+,K+-ATPase pumps treated with the marine agent palytoxin, this strict alternation is disrupted and binding sites are sometimes simultaneously accessible from both sides of the membrane, transforming the pumps into ion channels (see, for example, refs 2, 3). Current recordings in these channels can monitor accessibility of introduced cysteine residues to water-soluble sulphydryl-specific reagents4. We found previously5 that Na+,K+ pump-channels open to the extracellular surface through a deep and wide vestibule that emanates from a narrower pathway between transmembrane helices 4 and 6 (TM4 and TM6). Here we report that cysteine scans from TM1 to TM6 reveal a single unbroken cation pathway that traverses palytoxin-bound Na+,K+ pump-channels from one side of the membrane to the other. This pathway comprises residues from TM1, TM2, TM4 and TM6, passes through ion-binding site II, and is probably conserved in structurally and evolutionarily related P-type pumps, such as sarcoplasmic- and endoplasmic-reticulum Ca2+-ATPases and H+,K+-ATPases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Alternative routes for ions through the Na + ,K + -ATPase transmembrane domain.
Figure 2: Effects of MTSET + on current through palytoxin-bound Na + ,K + pump-channels with cysteines in TM5 or the TM5–TM6 loop.
Figure 3: Effects of MTSET + on current through palytoxin-bound Na + ,K + pump-channels with cysteines in TM1, TM2 or the TM1–TM2 loop.
Figure 4: Structural model and characteristics of ion pathway through the palytoxin-bound Na + ,K + -ATPase.

Similar content being viewed by others

References

  1. Läuger, P. Electrogenic Ion Pumps (Sinauer, 1991)

    Google Scholar 

  2. Scheiner-Bobis, G., Meyer zu Heringdorf, D., Christ, M. & Habermann, E. Palytoxin induces K+ efflux from yeast cells expressing the mammalian sodium pump. Mol. Pharmacol. 45, 1132–1136 (1994)

    CAS  PubMed  Google Scholar 

  3. Artigas, P. & Gadsby, D. C. Na+/K+-pump ligands modulate gating of palytoxin-induced ion channels. Proc. Natl Acad. Sci. USA 100, 501–505 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Karlin, A. & Akabas, M. H. Substituted-cysteine accessibility method. Methods Enzymol. 293, 123–145 (1998)

    Article  CAS  PubMed  Google Scholar 

  5. Reyes, N. & Gadsby, D. C. Ion permeation through the Na+,K+-ATPase. Nature 443, 470–474 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Toyoshima, C., Nomura, H. & Tsuda, T. Lumenal gating mechanism revealed in calcium pump crystal structures with phosphate analogues. Nature 432, 361–368 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Toyoshima, C., Nakasako, M., Nomura, H. & Ogawa, H. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405, 647–655 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Toyoshima, C. & Nomura, H. Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 418, 605–611 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Olesen, C. et al. Dephosphorylation of the calcium pump coupled to counterion occlusion. Science 306, 2251–2255 (2004)

    Article  ADS  CAS  Google Scholar 

  10. Sørensen, T. L. M., Møller, J. V. & Nissen, P. Phosphoryl transfer and calcium ion occlusion in the calcium pump. Science 304, 1672–1675 (2004)

    Article  ADS  PubMed  Google Scholar 

  11. Toyoshima, C. & Mizutani, T. Crystal structure of the calcium pump with a bound ATP analogue. Nature 430, 529–535 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Olesen, C. et al. The structural basis of calcium transport by the calcium pump. Nature 450, 1036–1042 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Toyoshima, C. et al. How processing of aspartylphosphate is coupled to luminal gating of the ion pathway in the calcium pump. Proc. Natl Acad. Sci. USA 104, 19831–19836 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Sakmann, B. & Neher, E. Single-Channel Recording (Plenum, 1995)

    Book  Google Scholar 

  15. Guennoun, S. & Horisberger, J. D. Structure of the 5th transmembrane segment of the Na,K-ATPase α subunit: a cysteine-scanning mutagenesis study. FEBS Lett. 482, 144–148 (2000)

    Article  CAS  PubMed  Google Scholar 

  16. Guennoun, S. & Horisberger, J. D. Cysteine-scanning mutagenesis study of the sixth transmembrane segment of the Na,K-ATPase α subunit. FEBS Lett. 513, 277–281 (2002)

    Article  CAS  PubMed  Google Scholar 

  17. Horisberger, J. D., Kharoubi-Hess, S., Guennoun, S. & Michielin, O. The fourth transmembrane segment of the Na,K-ATPase α subunit: a systematic mutagenesis study. J. Biol. Chem. 279, 29542–29550 (2004)

    Article  CAS  PubMed  Google Scholar 

  18. Artigas, P. & Gadsby, D. C. Ouabain affinity determining residues lie close to the Na/K pump ion pathway. Proc. Natl Acad. Sci. USA 103, 12613–12618 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Nielsen, J. M., Pedersen, P. A., Karlish, S. J. & Jorgensen, P. L. Importance of intramembrane carboxylic acids for occlusion of K+ ions at equilibrium in renal Na,K-ATPase. Biochemistry 37, 1961–1968 (1998)

    Article  CAS  PubMed  Google Scholar 

  20. Ogawa, H. & Toyoshima, C. Homology modeling of the cation binding sites of Na+K+-ATPase. Proc. Natl Acad. Sci. USA 99, 15977–15982 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Morth, J. P. et al. Crystal structure of the sodium-potassium pump. Nature 450, 1043–1049 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Artigas, P. & Gadsby, D. C. Large diameter of palytoxin-induced Na/K pump channels and modulation of palytoxin interaction by Na/K pump ligands. J. Gen. Physiol. 123, 357–376 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Harmel, N. & Apell, H. J. Palytoxin-induced effects on partial reactions of the Na,K-ATPase. J. Gen. Physiol. 128, 103–118 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Canessa, C. M., Horisberger, J. D., Louvard, D. & Rossier, B. C. Mutation of a cysteine in the first transmembrane segment of Na,K-ATPase α subunit confers ouabain resistance. EMBO J. 11, 1681–1687 (1992)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Einholm, A. P., Toustrup-Jensen, M., Andersen, J. P. & Vilsen, B. Mutation of Gly-94 in transmembrane segment M1 of Na+,K+-ATPase interferes with Na+ and K+ binding in E 2 P conformation. Proc. Natl Acad. Sci. USA 102, 11254–11259 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Einholm, A. P., Andersen, J. P. & Vilsen, B. Importance of Leu99 in transmembrane segment M1 of the Na+,K+-ATPase in the binding and occlusion of K+ . J. Biol. Chem. 282, 23854–23866 (2007)

    Article  CAS  PubMed  Google Scholar 

  27. Rakowski, R. F. et al. Sodium flux ratio in Na/K pump-channels opened by palytoxin. J. Gen. Physiol. 130, 41–54 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hodgkin, A. L. & Keynes, R. D. The potassium permeability of a giant nerve fibre. J. Physiol. (Lond.) 128, 61–88 (1955)

    Article  CAS  Google Scholar 

  29. Zhang, Z., Lewis, D., Strock, C. & Inesi, G. Detailed characterization of the cooperative mechanism of Ca2+ binding and catalytic activation in the Ca2+ transport (SERCA) ATPase. Biochemistry 39, 8758–8767 (2000)

    Article  CAS  PubMed  Google Scholar 

  30. Inesi, G. Sequential mechanism of calcium binding and translocation in sarcoplasmic reticulum adenosine triphosphatase. J. Biol. Chem. 262, 16338–16342 (1987)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Fataliev for help with molecular biology, the late R. F. Rakowski for cDNAs encoding Xenopus α1 and β3 Na+,K+-ATPase subunits, and P. Nissen, B. Vilsen and J. V. Møller for providing atomic coordinates before their publication. The work was supported by a grant from the NIH (to D.C.G.) and a fellowship from the Vicente Trust (to P.A.); N.R. is presently a Jane Coffin Fund Fellow. We dedicate this paper to the memory of our colleague R. F. Rakowski.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Gadsby.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-8 with Legends. (PDF 3687 kb)

Supplementary Movie

This movie file shows a 360° view of ion pathway through palytoxin bound Na+,K+-ATPase. Rotating Na+,K+-ATPase TM domain homology model (based on the E2·BeF3-structure of SERCA) in which atoms of MTSET+-reactive positions are shown as red spheres, and the rest as cartoons, as in Supplementary Fig. 2c. TM helices 3 and 7-10 are coloured grey; the others are TM1 (pale blue), TM2 (magenta), TM4 (blue), TM5 (purple) or TM6 (green). (MOV 26320 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takeuchi, A., Reyes, N., Artigas, P. et al. The ion pathway through the opened Na+,K+-ATPase pump. Nature 456, 413–416 (2008). https://doi.org/10.1038/nature07350

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07350

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing