Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

GILT is a critical host factor for Listeria monocytogenes infection

Abstract

Listeria monocytogenes is a Gram-positive, intracellular, food-borne pathogen that can cause severe illness in humans and animals. On infection, it is actively phagocytosed by macrophages1; it then escapes from the phagosome, replicates in the cytosol, and subsequently spreads from cell to cell by a non-lytic mechanism driven by actin polymerization2. Penetration of the phagosomal membrane is initiated by the secreted haemolysin listeriolysin O (LLO), which is essential for vacuolar escape in vitro and for virulence in animal models of infection3. Reduction is required to activate the lytic activity of LLO in vitro4,5,6, and we show here that reduction by the enzyme γ-interferon-inducible lysosomal thiol reductase (GILT, also called Ifi30) is responsible for the activation of LLO in vivo. GILT is a soluble thiol reductase expressed constitutively within the lysosomes of antigen-presenting cells7,8, and it accumulates in macrophage phagosomes as they mature into phagolysosomes9. The enzyme is delivered by a mannose-6-phosphate receptor-dependent mechanism to the endocytic pathway, where amino- and carboxy-terminal pro-peptides are cleaved to generate a 30-kDa mature enzyme7,8,10. The active site of GILT contains two cysteine residues in a CXXC motif that catalyses the reduction of disulphide bonds7,8. Mice lacking GILT are deficient in generating major histocompatibility complex class-II-restricted CD4+ T-cell responses to protein antigens that contain disulphide bonds11,12. Here we show that these mice are resistant to L. monocytogenes infection. Replication of the organism in GILT-negative macrophages, or macrophages expressing an enzymatically inactive GILT mutant, is impaired because of delayed escape from the phagosome. GILT activates LLO within the phagosome by the thiol reductase mechanism shared by members of the thioredoxin family. In addition, purified GILT activates recombinant LLO, facilitating membrane permeabilization and red blood cell lysis. The data show that GILT is a critical host factor that facilitates L. monocytogenes infection.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Growth of L. monocytogenes is decreased in GILT-deficient mice and GILT-deficient macrophages.
Figure 2: Phagosomal escape of L. monocytogenes is delayed in GILT-negative macrophages.
Figure 3: LLO is activated by GILT reduction during infection and in cell-free assays.
Figure 4: GILT activates LLO by using the classical thioredoxin reduction mechanism.

Similar content being viewed by others

References

  1. Pizarro-Cerda, J., Sousa, S. & Cossart, P. Exploitation of host cell cytoskeleton and signalling during Listeria monocytogenes entry into mammalian cells. C. R. Biol. 327, 523–531 (2004)

    Article  CAS  Google Scholar 

  2. Tilney, L. G. & Portnoy, D. A. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes . J. Cell Biol. 109, 1597–1608 (1989)

    Article  CAS  Google Scholar 

  3. Barry, R. A., Bouwer, H. G., Portnoy, D. A. & Hinrichs, D. J. Pathogenicity and immunogenicity of Listeria monocytogenes small-plaque mutants defective for intracellular growth and cell-to-cell spread. Infect. Immun. 60, 1625–1632 (1992)

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Billington, S. J., Jost, B. H. & Songer, J. G. Thiol-activated cytolysins: structure, function and role in pathogenesis. FEMS Microbiol. Lett. 182, 197–205 (2000)

    Article  CAS  Google Scholar 

  5. Geoffroy, C., Gaillard, J. L., Alouf, J. E. & Berche, P. Purification, characterization, and toxicity of the sulfhydryl-activated hemolysin listeriolysin O from Listeria monocytogenes . Infect. Immun. 55, 1641–1646 (1987)

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Portnoy, D. A., Chakraborty, T., Goebel, W. & Cossart, P. Molecular determinants of Listeria monocytogenes pathogenesis. Infect. Immun. 60, 1263–1267 (1992)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Arunachalam, B., Phan, U. T., Geuze, H. J. & Cresswell, P. Enzymatic reduction of disulfide bonds in lysosomes: characterization of a gamma-interferon-inducible lysosomal thiol reductase (GILT). Proc. Natl Acad. Sci. USA 97, 745–750 (2000)

    Article  ADS  CAS  Google Scholar 

  8. Phan, U. T., Arunachalam, B. & Cresswell, P. Gamma-interferon-inducible lysosomal thiol reductase (GILT). Maturation, activity, and mechanism of action. J. Biol. Chem. 275, 25907–25914 (2000)

    Article  CAS  Google Scholar 

  9. Garin, J. et al. The phagosome proteome: insight into phagosome functions. J. Cell Biol. 152, 165–180 (2001)

    Article  CAS  Google Scholar 

  10. Phan, U. T., Lackman, R. L. & Cresswell, P. Role of the C-terminal propeptide in the activity and maturation of gamma-interferon-inducible lysosomal thiol reductase (GILT). Proc. Natl Acad. Sci. USA 99, 12298–12303 (2002)

    Article  ADS  CAS  Google Scholar 

  11. Maric, M. et al. Defective antigen processing in GILT-free mice. Science 294, 1361–1365 (2001)

    Article  ADS  CAS  Google Scholar 

  12. Sealy, R. et al. Target peptide sequence within infectious human immunodeficiency virus type 1 does not ensure envelope-specific T-helper cell reactivation: influences of cysteine protease and gamma interferon-induced thiol reductase activities. Clin. Vaccine Immunol 15, 713–719 (2008)

    Article  CAS  Google Scholar 

  13. Lackman, R. L. & Cresswell, P. Exposure of the promonocytic cell line THP-1 to Escherichia coli induces IFN-γ-inducible lysosomal thiol reductase expression by inflammatory cytokines. J. Immunol. 177, 4833–4840 (2006)

    Article  CAS  Google Scholar 

  14. Michel, E., Reich, K. A., Favier, R., Berche, P. & Cossart, P. Attenuated mutants of the intracellular bacterium Listeria monocytogenes obtained by single amino acid substitutions in listeriolysin O. Mol. Microbiol. 4, 2167–2178 (1990)

    Article  CAS  Google Scholar 

  15. Hastings, K. T., Lackman, R. L. & Cresswell, P. Functional requirements for the lysosomal thiol reductase GILT in MHC class II-restricted antigen processing. J. Immunol. 177, 8569–8577 (2006)

    Article  CAS  Google Scholar 

  16. Walker, K. W. & Gilbert, H. F. Scanning and escape during protein-disulfide isomerase-assisted protein folding. J. Biol. Chem. 272, 8845–8848 (1997)

    Article  CAS  Google Scholar 

  17. Alouf, J. E., Billington, S. J. & Jost, B. H. in Bacterial Toxins: A Comprehensive Sourcebook 643–658. (Academic, 2005)

    Google Scholar 

  18. Heuck, A. P., Tweten, R. K. & Johnson, A. E. Assembly and topography of the prepore complex in cholesterol-dependent cytolysins. J. Biol. Chem. 278, 31218–31225 (2003)

    Article  CAS  Google Scholar 

  19. Soltani, C. E., Hotze, E. M., Johnson, A. E. & Tweten, R. K. Structural elements of the cholesterol-dependent cytolysins that are responsible for their cholesterol-sensitive membrane interactions. Proc. Natl Acad. Sci. USA 104, 20226–20231 (2007)

    Article  ADS  CAS  Google Scholar 

  20. Soltani, C. E., Hotze, E. M., Johnson, A. E. & Tweten, R. K. Specific protein-membrane contacts are required for prepore and pore assembly by a cholesterol-dependent cytolysin. J. Biol. Chem. 282, 15709–15716 (2007)

    Article  CAS  Google Scholar 

  21. Pinkney, M., Beachey, E. & Kehoe, M. The thiol-activated toxin streptolysin O does not require a thiol group for cytolytic activity. Infect. Immun. 57, 2553–2558 (1989)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Bouwer, H. G. et al. Listeria monocytogenes-infected hepatocytes are targets of major histocompatibility complex class Ib-restricted antilisterial cytotoxic T lymphocytes. Infect. Immun. 66, 2814–2817 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Haschtmann, D., Gerber, H. J. & Mielke, M. E. Cytotoxic activity of murine resident peritoneal cells against Listeria monocytogenes-infected hepatocytes in vitro . Microbes Infect. 7, 1177–1183 (2005)

    Article  CAS  Google Scholar 

  24. Lackman, R. L., Jamieson, A. M., Griffith, J. M., Geuze, H. & Cresswell, P. Innate immune recognition triggers secretion of lysosomal enzymes by macrophages. Traffic 8, 1179–1189 (2007)

    Article  CAS  Google Scholar 

  25. Bryant, R. E., Rashad, A. L., Mazza, J. A. & Hammond, D. beta-Lactamase activity in human pus. J. Infect. Dis. 142, 594–601 (1980)

    Article  CAS  Google Scholar 

  26. Pamer, E. G., Wang, C. R., Flaherty, L., Lindahl, K. F. & Bevan, M. J. H-2M3 presents a Listeria monocytogenes peptide to cytotoxic T lymphocytes. Cell 70, 215–223 (1992)

    Article  CAS  Google Scholar 

  27. Gedde, M. M., Higgins, D. E., Tilney, L. G. & Portnoy, D. A. Role of listeriolysin O in cell-to-cell spread of Listeria monocytogenes . Infect. Immun. 68, 999–1003 (2000)

    Article  CAS  Google Scholar 

  28. Agaisse, H. et al. Genome-wide RNAi screen for host factors required for intracellular bacterial infection. Science 309, 1248–1251 (2005)

    Article  ADS  CAS  Google Scholar 

  29. Yates, R. M., Hermetter, A. & Russell, D. G. The kinetics of phagosome maturation as a function of phagosome/lysosome fusion and acquisition of hydrolytic activity. Traffic 6, 413–420 (2005)

    Article  CAS  Google Scholar 

  30. Yates, R. M., Hermetter, A., Taylor, G. A. & Russell, D. G. Macrophage activation downregulates the degradative capacity of the phagosome. Traffic 8, 241–250 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to D. Portnoy for advice and reagents, and to N. Dometios for manuscript preparation. We acknowledge the valuable contribution of the late M. Pypaert to the electron microscopy. This work was supported by NIH AI023081 (P.C.) and the Howard Hughes Medical Institute (P.C., R.S.).

Author Contributions R.S. performed experiments, A.J. assisted with the in vivo infection, and R.S. and P.C. wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Cresswell.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-5 with legends. (PDF 362 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, R., Jamieson, A. & Cresswell, P. GILT is a critical host factor for Listeria monocytogenes infection. Nature 455, 1244–1247 (2008). https://doi.org/10.1038/nature07344

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07344

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing