Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Thresholds for Cenozoic bipolar glaciation

Abstract

The long-standing view of Earth’s Cenozoic glacial history calls for the first continental-scale glaciation of Antarctica in the earliest Oligocene epoch (33.6 million years ago1), followed by the onset of northern-hemispheric glacial cycles in the late Pliocene epoch, about 31 million years later2. The pivotal early Oligocene event is characterized by a rapid shift of 1.5 parts per thousand in deep-sea benthic oxygen-isotope values3 (Oi-1) within a few hundred thousand years4, reflecting a combination of terrestrial ice growth and deep-sea cooling. The apparent absence of contemporaneous cooling in deep-sea Mg/Ca records4,5,6, however, has been argued to reflect the growth of more ice than can be accommodated on Antarctica; this, combined with new evidence of continental cooling7 and ice-rafted debris8,9 in the Northern Hemisphere during this period, raises the possibility that Oi-1 represents a precursory bipolar glaciation. Here we test this hypothesis using an isotope-capable global climate/ice-sheet model that accommodates both the long-term decline of Cenozoic atmospheric CO2 levels10,11 and the effects of orbital forcing12. We show that the CO2 threshold below which glaciation occurs in the Northern Hemisphere (280 p.p.m.v.) is much lower than that for Antarctica (750 p.p.m.v.). Therefore, the growth of ice sheets in the Northern Hemisphere immediately following Antarctic glaciation would have required rapid CO2 drawdown within the Oi-1 timeframe, to levels lower than those estimated by geochemical proxies10,11 and carbon-cycle models13,14. Instead of bipolar glaciation, we find that Oi-1 is best explained by Antarctic glaciation alone, combined with deep-sea cooling of up to 4 °C and Antarctic ice that is less isotopically depleted (-30 to -35‰) than previously suggested15,16. Proxy CO2 estimates remain above our model’s northern-hemispheric glaciation threshold of 280 p.p.m.v. until 25 Myr ago, but have been near or below that level ever since10,11. This implies that episodic northern-hemispheric ice sheets have been possible some 20 million years earlier than currently assumed (although still much later than Oi-1) and could explain some of the variability in Miocene sea-level records17,18.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Changes in the isotopic composition of the ocean across the Eocene/Oligocene transition.
Figure 2: Simulated isotopic composition of snowfall on a glaciating Antarctic continent.
Figure 3: Simulations of Northern Hemisphere ice sheets for progressively lower values of CO2.
Figure 4: Model-generated CO2 thresholds for Antarctic and Northern Hemisphere glaciation superposed on a Cenozoic record of atmospheric CO2.

Similar content being viewed by others

References

  1. Barrett, P. J. Antarctic paleoenvironment through Cenozoic times: A review. Terra Antarct. 3, 103–119 (1996)

    Google Scholar 

  2. Shackleton, N. J. et al. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region. Nature 307, 620–623 (1984)

    Article  ADS  CAS  Google Scholar 

  3. Miller, K. G., Fairbanks, R. G. & Mountain, G. S. Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. Paleoceanography 1, 1–20 (1987)

    Article  ADS  Google Scholar 

  4. Coxall, H. K., Wilson, P. A., Pälicke, H., Lear, C. & Backman, J. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature 433, 53–57 (2005)

    Article  ADS  CAS  Google Scholar 

  5. Lear, C. H., Rosenthal, Y., Coxall, H. K. & Wilson, P. A. Late Eocene to early Miocene ice-sheet dynamics and the global carbon cycle. Paleoceanography 19 PA4015 10.1029/2004PA001039 (2004)

    Article  ADS  Google Scholar 

  6. Billups, K. & Schrag, D. P. Application of benthic foraminiferal Mg/Ca ratios to questions of Cenozoic climate change. Earth Planet. Sci. Lett. 209, 181–195 (2003)

    Article  ADS  CAS  Google Scholar 

  7. Zanazzi, A., Kohn, M. J., MacFadden, B. J. & Terry, D. O. Large temperature drop across the Eocene–Oligocene transition in central North America. Nature 445, 639–642 (2007)

    Article  CAS  Google Scholar 

  8. Eldrett, J. S., Harding, I. C., Wilson, P. A., Butler, E. & Roberts, A. P. Continental ice in Greenland during the Eocene and Oligocene. Nature 466, 176–179 (2007)

    Article  ADS  Google Scholar 

  9. Tripati, A. et al. Evidence for Northern Hemisphere glaciation back to 44 Ma from ice-rafted debris in the Greenland Sea. Earth Planet. Sci. Lett. 265, 112–122 (2008)

    Article  ADS  CAS  Google Scholar 

  10. Pagani, M., Zachos, J. C., Freeman, K. H., Tipple, B. & Bohaty, S. M. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science 309, 600–603 (2005)

    Article  ADS  CAS  Google Scholar 

  11. Pearson, P. N. & Palmer, M. R. Atmospheric carbon dioxide over the past 60 million years. Nature 406, 695–699 (2000)

    Article  ADS  CAS  Google Scholar 

  12. Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004)

    Article  ADS  Google Scholar 

  13. Zachos, J. & Kump, L. Carbon cycle feedbacks and the initiation of Antarctic glaciation in the earliest Oligocene. Global Planet. Change 47, 51–66 (2005)

    Article  ADS  Google Scholar 

  14. Merico, A., Tyrrell, T. & Wilson, P. A. Eocene/Oligocene ocean de-acidification linked to Antarctic glaciation by sea level fall. Nature 452, 979–982 (2008)

    Article  ADS  CAS  Google Scholar 

  15. Katz, M. E. et al. Stepwise transition from the Eocene greenhouse to the Oligocene icehouse. Nature Geosci. 1, 329–334 (2008)

    Article  ADS  CAS  Google Scholar 

  16. Lear, C., Bailey, T. R., Pearson, P. N., Coxhall, H. K. & Rosenthal, Y. Cooling and ice growth across the Eocene–Oligocene transition. Geology 36 251–354 10.1130/G1124 (2008)

    Article  ADS  CAS  Google Scholar 

  17. Pekar, S. & DeConto, R. M. High-resolution ice-volume estimates for the early Miocene: Evidence for a dynamic ice sheet in Antarctica. Palaeogeogr. Palaeoclimatol. Palaeoecol. 231, 101–109 (2006)

    Article  Google Scholar 

  18. Pollard, D. & DeConto, R. M. Hysteresis in Cenozoic Antarctic ice sheet variations. Global Planet. Change 45, 9–21 (2005)

    Article  ADS  Google Scholar 

  19. Pekar, S. F. & Christie-Blick, N. Resolving apparent conflicts between oceanographic and Antarctic climate records and evidence for a decrease in pCO2 during the Oligocene through early Miocene (34–16 Ma). Palaeogeogr. Palaeoclimatol. Palaeoecol. 260, 41–49 (2008)

    Article  Google Scholar 

  20. Kominz, M. A. & Pekar, S. F. Oligocene eustasy from two-dimensional sequence stratigraphic backstripping. Geol. Soc. Am. Bull. 113, 291–304 (2001)

    Article  ADS  Google Scholar 

  21. Kennett, J. P. Cenozoic evolution of Antarctic glaciation, the circum-Antarctic oceans and their impact on global paleoceanography. J. Geophys. Res. 82, 3843–3859 (1977)

    Article  ADS  CAS  Google Scholar 

  22. DeConto, R. M. & Pollard, D. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2 . Nature 421, 245–249 (2003)

    Article  ADS  CAS  Google Scholar 

  23. Larsen, H. C. et al. Seven million years of glaciation in Greenland. Science 264, 952–955 (1994)

    Article  ADS  CAS  Google Scholar 

  24. Raymo, M. E. & Ruddiman, W. F. Tectonic forcing of late Cenozoic climate. Nature 359, 117–122 (1992)

    Article  ADS  CAS  Google Scholar 

  25. St John, K. Cenozoic ice-rafting history of the central Arctic Ocean: terrigenous sands on the Lomonosov Ridge. Paleoceanography 23, PA1S05 (2008)

    Article  Google Scholar 

  26. Zachos, J., Pagani, M., Sloan, L. & Thomas, E. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001)

    Article  ADS  CAS  Google Scholar 

  27. Lhomme, N., Clarke, G. K. C. & Ritz, C. Global budget of water isotopes inferred from polar ice sheets. Geophys. Res. Lett. 32 L20502 10.1029/2005GL023774 (2005)

    Article  ADS  CAS  Google Scholar 

  28. Mathieu, R. et al. Simulation of stable water isotope variations by the GENESIS GCM for modern conditions. J. Geophys. Res. 107, 10.1029/2001JD900255 (2002)

  29. DeConto, R. M., Pollard, D. & Harwood, D. Sea ice feedback and Cenozoic evolution of Antarctic climate and ice sheets. Paleoceanography 22 PA3214 10.1029/2006PA001350 (2007)

    Article  ADS  Google Scholar 

  30. Edgar, K. M., Wilson, P. A., Sexton, P. F. & Suganuma, Y. No extreme bipolar glaciation during the Eocene calcite compensation shift. Nature 488, 908–911 (2007)

    Article  ADS  Google Scholar 

  31. Pollard, D. & DeConto, R. M. in Glacial Sedimentary Processes and Products (eds Hambrey, M. et al.), 37–52 (Internat. Assoc. Sedimentologists Spec. Publ. 39, Blackwell, 2007)

    Google Scholar 

  32. Huybrechts, P. Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles. Quat. Sci. Rev. 21, 203–231 (2002)

    Article  ADS  Google Scholar 

  33. Bamber, J. A. & Bindschadler, R. A. An improved elevation dataset for climate and ice-sheet modelling: validation with satellite imagery. Ann. Glaciol. 25, 439–444 (1997)

    Article  ADS  Google Scholar 

  34. Sorlien, C. C. et al. Oligocene development of the West Antarctic ice sheet recorded in eastern Ross Sea strata. Geology 35, 467–470 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This material is based on work supported by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. DeConto.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-4 with Legends (PDF 594 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeConto, R., Pollard, D., Wilson, P. et al. Thresholds for Cenozoic bipolar glaciation. Nature 455, 652–656 (2008). https://doi.org/10.1038/nature07337

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07337

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing