Abstract
The long-standing view of Earth’s Cenozoic glacial history calls for the first continental-scale glaciation of Antarctica in the earliest Oligocene epoch (∼33.6 million years ago1), followed by the onset of northern-hemispheric glacial cycles in the late Pliocene epoch, about 31 million years later2. The pivotal early Oligocene event is characterized by a rapid shift of 1.5 parts per thousand in deep-sea benthic oxygen-isotope values3 (Oi-1) within a few hundred thousand years4, reflecting a combination of terrestrial ice growth and deep-sea cooling. The apparent absence of contemporaneous cooling in deep-sea Mg/Ca records4,5,6, however, has been argued to reflect the growth of more ice than can be accommodated on Antarctica; this, combined with new evidence of continental cooling7 and ice-rafted debris8,9 in the Northern Hemisphere during this period, raises the possibility that Oi-1 represents a precursory bipolar glaciation. Here we test this hypothesis using an isotope-capable global climate/ice-sheet model that accommodates both the long-term decline of Cenozoic atmospheric CO2 levels10,11 and the effects of orbital forcing12. We show that the CO2 threshold below which glaciation occurs in the Northern Hemisphere (∼280 p.p.m.v.) is much lower than that for Antarctica (∼750 p.p.m.v.). Therefore, the growth of ice sheets in the Northern Hemisphere immediately following Antarctic glaciation would have required rapid CO2 drawdown within the Oi-1 timeframe, to levels lower than those estimated by geochemical proxies10,11 and carbon-cycle models13,14. Instead of bipolar glaciation, we find that Oi-1 is best explained by Antarctic glaciation alone, combined with deep-sea cooling of up to 4 °C and Antarctic ice that is less isotopically depleted (-30 to -35‰) than previously suggested15,16. Proxy CO2 estimates remain above our model’s northern-hemispheric glaciation threshold of ∼280 p.p.m.v. until ∼25 Myr ago, but have been near or below that level ever since10,11. This implies that episodic northern-hemispheric ice sheets have been possible some 20 million years earlier than currently assumed (although still much later than Oi-1) and could explain some of the variability in Miocene sea-level records17,18.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Barrett, P. J. Antarctic paleoenvironment through Cenozoic times: A review. Terra Antarct. 3, 103–119 (1996)
Shackleton, N. J. et al. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region. Nature 307, 620–623 (1984)
Miller, K. G., Fairbanks, R. G. & Mountain, G. S. Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. Paleoceanography 1, 1–20 (1987)
Coxall, H. K., Wilson, P. A., Pälicke, H., Lear, C. & Backman, J. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature 433, 53–57 (2005)
Lear, C. H., Rosenthal, Y., Coxall, H. K. & Wilson, P. A. Late Eocene to early Miocene ice-sheet dynamics and the global carbon cycle. Paleoceanography 19 PA4015 10.1029/2004PA001039 (2004)
Billups, K. & Schrag, D. P. Application of benthic foraminiferal Mg/Ca ratios to questions of Cenozoic climate change. Earth Planet. Sci. Lett. 209, 181–195 (2003)
Zanazzi, A., Kohn, M. J., MacFadden, B. J. & Terry, D. O. Large temperature drop across the Eocene–Oligocene transition in central North America. Nature 445, 639–642 (2007)
Eldrett, J. S., Harding, I. C., Wilson, P. A., Butler, E. & Roberts, A. P. Continental ice in Greenland during the Eocene and Oligocene. Nature 466, 176–179 (2007)
Tripati, A. et al. Evidence for Northern Hemisphere glaciation back to 44 Ma from ice-rafted debris in the Greenland Sea. Earth Planet. Sci. Lett. 265, 112–122 (2008)
Pagani, M., Zachos, J. C., Freeman, K. H., Tipple, B. & Bohaty, S. M. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science 309, 600–603 (2005)
Pearson, P. N. & Palmer, M. R. Atmospheric carbon dioxide over the past 60 million years. Nature 406, 695–699 (2000)
Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004)
Zachos, J. & Kump, L. Carbon cycle feedbacks and the initiation of Antarctic glaciation in the earliest Oligocene. Global Planet. Change 47, 51–66 (2005)
Merico, A., Tyrrell, T. & Wilson, P. A. Eocene/Oligocene ocean de-acidification linked to Antarctic glaciation by sea level fall. Nature 452, 979–982 (2008)
Katz, M. E. et al. Stepwise transition from the Eocene greenhouse to the Oligocene icehouse. Nature Geosci. 1, 329–334 (2008)
Lear, C., Bailey, T. R., Pearson, P. N., Coxhall, H. K. & Rosenthal, Y. Cooling and ice growth across the Eocene–Oligocene transition. Geology 36 251–354 10.1130/G1124 (2008)
Pekar, S. & DeConto, R. M. High-resolution ice-volume estimates for the early Miocene: Evidence for a dynamic ice sheet in Antarctica. Palaeogeogr. Palaeoclimatol. Palaeoecol. 231, 101–109 (2006)
Pollard, D. & DeConto, R. M. Hysteresis in Cenozoic Antarctic ice sheet variations. Global Planet. Change 45, 9–21 (2005)
Pekar, S. F. & Christie-Blick, N. Resolving apparent conflicts between oceanographic and Antarctic climate records and evidence for a decrease in pCO2 during the Oligocene through early Miocene (34–16 Ma). Palaeogeogr. Palaeoclimatol. Palaeoecol. 260, 41–49 (2008)
Kominz, M. A. & Pekar, S. F. Oligocene eustasy from two-dimensional sequence stratigraphic backstripping. Geol. Soc. Am. Bull. 113, 291–304 (2001)
Kennett, J. P. Cenozoic evolution of Antarctic glaciation, the circum-Antarctic oceans and their impact on global paleoceanography. J. Geophys. Res. 82, 3843–3859 (1977)
DeConto, R. M. & Pollard, D. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2 . Nature 421, 245–249 (2003)
Larsen, H. C. et al. Seven million years of glaciation in Greenland. Science 264, 952–955 (1994)
Raymo, M. E. & Ruddiman, W. F. Tectonic forcing of late Cenozoic climate. Nature 359, 117–122 (1992)
St John, K. Cenozoic ice-rafting history of the central Arctic Ocean: terrigenous sands on the Lomonosov Ridge. Paleoceanography 23, PA1S05 (2008)
Zachos, J., Pagani, M., Sloan, L. & Thomas, E. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001)
Lhomme, N., Clarke, G. K. C. & Ritz, C. Global budget of water isotopes inferred from polar ice sheets. Geophys. Res. Lett. 32 L20502 10.1029/2005GL023774 (2005)
Mathieu, R. et al. Simulation of stable water isotope variations by the GENESIS GCM for modern conditions. J. Geophys. Res. 107, 10.1029/2001JD900255 (2002)
DeConto, R. M., Pollard, D. & Harwood, D. Sea ice feedback and Cenozoic evolution of Antarctic climate and ice sheets. Paleoceanography 22 PA3214 10.1029/2006PA001350 (2007)
Edgar, K. M., Wilson, P. A., Sexton, P. F. & Suganuma, Y. No extreme bipolar glaciation during the Eocene calcite compensation shift. Nature 488, 908–911 (2007)
Pollard, D. & DeConto, R. M. in Glacial Sedimentary Processes and Products (eds Hambrey, M. et al.), 37–52 (Internat. Assoc. Sedimentologists Spec. Publ. 39, Blackwell, 2007)
Huybrechts, P. Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles. Quat. Sci. Rev. 21, 203–231 (2002)
Bamber, J. A. & Bindschadler, R. A. An improved elevation dataset for climate and ice-sheet modelling: validation with satellite imagery. Ann. Glaciol. 25, 439–444 (1997)
Sorlien, C. C. et al. Oligocene development of the West Antarctic ice sheet recorded in eastern Ross Sea strata. Geology 35, 467–470 (2007)
Acknowledgements
This material is based on work supported by the National Science Foundation.
Author information
Authors and Affiliations
Corresponding author
Supplementary information
Supplementary Figures
This file contains Supplementary Figures 1-4 with Legends (PDF 594 kb)
Rights and permissions
About this article
Cite this article
DeConto, R., Pollard, D., Wilson, P. et al. Thresholds for Cenozoic bipolar glaciation. Nature 455, 652–656 (2008). https://doi.org/10.1038/nature07337
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/nature07337
This article is cited by
-
Palaeozoic cooling modulated by ophiolite weathering through organic carbon preservation
Nature Geoscience (2024)
-
Productivity in the Southern Ocean Antarctic Zone during the Northern Hemisphere Glaciation (NHG) and its link to atmospheric pCO2
Science China Earth Sciences (2024)
-
Large obliquity-paced Antarctic ice-volume fluctuations suggest melting by atmospheric and ocean warming during late Oligocene
Communications Earth & Environment (2023)
-
Reconciling Southern Ocean fronts equatorward migration with minor Antarctic ice volume change during Miocene cooling
Nature Communications (2023)
-
A punctuated equilibrium analysis of the climate evolution of cenozoic exhibits a hierarchy of abrupt transitions
Scientific Reports (2023)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.