Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of a complex of the ATPase SecA and the protein-translocation channel

Abstract

Most proteins are secreted from bacteria by the interaction of the cytoplasmic SecA ATPase with a membrane channel, formed by the heterotrimeric SecY complex. Here we report the crystal structure of SecA bound to the SecY complex, with a maximum resolution of 4.5 ångström (Å), obtained for components from Thermotoga maritima. One copy of SecA in an intermediate state of ATP hydrolysis is bound to one molecule of the SecY complex. Both partners undergo important conformational changes on interaction. The polypeptide-cross-linking domain of SecA makes a large conformational change that could capture the translocation substrate in a ‘clamp’. Polypeptide movement through the SecY channel could be achieved by the motion of a ‘two-helix finger’ of SecA inside the cytoplasmic funnel of SecY, and by the coordinated tightening and widening of SecA’s clamp above the SecY pore. SecA binding generates a ‘window’ at the lateral gate of the SecY channel and it displaces the plug domain, preparing the channel for signal sequence binding and channel opening.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Architecture of the T. maritima SecA–SecYEG complex.
Figure 2: Conformational changes of SecA.
Figure 3: Conformational changes of SecY.
Figure 4: The polypeptide clamp of SecA.
Figure 5: Model for SecA-mediated protein translocation.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Coordinates for the T. maritima SecA–SecYEG complex have been deposited in the RSCB Protein Data Bank (PDB) under the accession code 3DIN.

References

  1. Rapoport, T. A. Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 450, 663–669 (2007)

    Article  CAS  ADS  PubMed  Google Scholar 

  2. Neumann-Haefelin, C., Schafer, U., Muller, M. & Koch, H. G. SRP-dependent co-translational targeting and SecA-dependent translocation analyzed as individual steps in the export of a bacterial protein. EMBO J. 19, 6419–6426 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Qi, H. Y. & Bernstein, H. D. SecA is required for the insertion of inner membrane proteins targeted by the Escherichia coli signal recognition particle. J. Biol. Chem. 274, 8993–8997 (1999)

    Article  CAS  PubMed  Google Scholar 

  4. Duong, F. & Wickner, W. Sec-dependent membrane protein biogenesis: SecYEG, preprotein hydrophobicity and translocation kinetics control the stop-transfer function. EMBO J. 17, 696–705 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. van den Berg, B. et al. X-ray structure of a protein-conducting channel. Nature 427, 36–44 (2004)

    Article  CAS  PubMed  Google Scholar 

  6. Osborne, A. R. & Rapoport, T. A. Protein translocation is mediated by oligomers of the SecY complex with one SecY copy forming the channel. Cell 129, 97–110 (2007)

    Article  CAS  PubMed  Google Scholar 

  7. Duong, F. Binding, activation and dissociation of the dimeric SecA ATPase at the dimeric SecYEG translocase. EMBO J. 22, 4375–4384 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Harris, C. R. & Silhavy, T. J. Mapping an interface of SecY (PrlA) and SecE (PrlG) by using synthetic phenotypes and in vivo cross-linking. J. Bacteriol. 181, 3438–3444 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Tam, P. C., Maillard, A. P., Chan, K. K. & Duong, F. Investigating the SecY plug movement at the SecYEG translocation channel. EMBO J. 24, 3380–3388 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Plath, K., Mothes, W., Wilkinson, B. M., Stirling, C. J. & Rapoport, T. A. Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell 94, 795–807 (1998)

    Article  CAS  PubMed  Google Scholar 

  11. Brundage, L., Hendrick, J. P., Schiebel, E., Driessen, A. J. M. & Wickner, W. The purified E. coli integral membrane protein SecY/E is sufficient for reconstitution of SecA-dependent precursor proteintranslocation. Cell 62, 649–657 (1990)

    Article  CAS  PubMed  Google Scholar 

  12. Akimaru, J., Matsuyama, S. I., Tokuda, H. & Mizushima, S. Reconstitution of a protein translocation system containing purified SecY, SecE, and SecA from Escherichia coli . Proc. Natl Acad. Sci. USA 88, 6545–6549 (1991)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  13. Economou, A. & Wickner, W. SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion. Cell 78, 835–843 (1994)

    Article  CAS  PubMed  Google Scholar 

  14. Hunt, J. F. et al. Nucleotide control of interdomain interactions in the conformational reaction cycle of SecA. Science 297, 2018–2026 (2002)

    Article  CAS  ADS  PubMed  Google Scholar 

  15. Or, E., Navon, A. & Rapoport, T. Dissociation of the dimeric SecA ATPase during protein translocation across the bacterial membrane. EMBO J. 21, 4470–4479 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Or, E., Boyd, D., Gon, S., Beckwith, J. & Rapoport, T. The bacterial ATPase SecA functions as a monomer in protein translocation. J. Biol. Chem. 280, 9097–9105 (2005)

    Article  CAS  PubMed  Google Scholar 

  17. Alami, M., Dalal, K., Lelj-Garolla, B., Sligar, S. G. & Duong, F. Nanodiscs unravel the interaction between the SecYEG channel and its cytosolic partner SecA. EMBO J. 26, 1995–2004 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jilaveanu, L. B., Zito, C. R. & Oliver, D. Dimeric SecA is essential for protein translocation. Proc. Natl Acad. Sci. USA 102, 7511–7516 (2005)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  19. de Keyzer, J. et al. Covalently dimerized SecA is functional in protein translocation. J. Biol. Chem. 280, 35255–35260 (2005)

    Article  CAS  PubMed  Google Scholar 

  20. Mitra, K., Frank, J. & Driessen, A. Co- and post-translational translocation through the protein-conducting channel: analogous mechanisms at work? Nature Struct. Mol. Biol. 13, 957–964 (2006)

    Article  CAS  Google Scholar 

  21. Osborne, A. R., Clemons, W. M. & Rapoport, T. A. A large conformational change of the translocation ATPase SecA. Proc. Natl Acad. Sci. USA 101, 10937–10942 (2004)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  22. Zimmer, J., Li, W. & Rapoport, T. A. A novel dimer interface and conformational changes revealed by an X-ray structure of B. subtilis SecA. J. Mol. Biol. 364, 259–265 (2006)

    Article  CAS  PubMed  Google Scholar 

  23. Shiba, K., Ito, K., Yura, T. & Cerretti, D. P. A defined mutation in the protein export gene within the spc ribosomal protein operon of Escherichia coli: isolation and characterization of a new temperature-sensitive secY mutant. EMBO J. 3, 631–635 (1984)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mori, H. & Ito, K. An essential amino acid residue in the protein translocation channel revealed by targeted random mutagenesis of SecY. Proc. Natl Acad. Sci. USA 98, 5128–5133 (2001)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  25. Chiba, K., Mori, H. & Ito, K. Roles of the C-terminal end of SecY in protein translocation and viability of Escherichia coli . J. Bacteriol. 184, 2243–2250 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mori, H., Shimizu, Y. & Ito, K. Superactive SecY variants that fulfill the essential translocation function with a reduced cellular quantity. J. Biol. Chem. 277, 48550–48557 (2002)

    Article  CAS  PubMed  Google Scholar 

  27. de Vrije, T., de Swart, R., Dowhan, W., Tommassen, J. & de Kruijff, B. Phosphatidylglycerol is involved in protein translocation across Escherichia coli inner membranes. Nature 334, 173–175 (1988)

    Article  CAS  ADS  PubMed  Google Scholar 

  28. Lill, R., Dowhan, W. & Wickner, W. The ATPase activity of SecA is regulated by acidic phospholipids, SecY, and the leader and mature domains of precursor proteins. Cell 60, 271–280 (1990)

    Article  CAS  PubMed  Google Scholar 

  29. Velankar, S. S., Soultanas, P., Dillingham, M. S., Subramanya, H. S. & Wigley, D. B. Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism. Cell 97, 75–84 (1999)

    Article  CAS  PubMed  Google Scholar 

  30. Nishiyama, K., Suzuki, T. & Tokuda, H. Inversion of the membrane topology of SecG coupled with SecA-dependent preprotein translocation. Cell 85, 71–81 (1996)

    Article  CAS  PubMed  Google Scholar 

  31. Satoh, Y., Matsumoto, G., Mori, H. & Ito, K. Nearest neighbor analysis of the SecYEG complex. 1. Identification of a SecY–SecG interface. Biochemistry 42, 7434–7441 (2003)

    Article  CAS  PubMed  Google Scholar 

  32. Breyton, C., Haase, W., Rapoport, T. A., Kuhlbrandt, W. & Collinson, I. Three-dimensional structure of the bacterial protein-translocation complex SecYEG. Nature 418, 662–665 (2002)

    Article  CAS  ADS  PubMed  Google Scholar 

  33. Bostina, M., Mohsin, B., Kuhlbrandt, W. & Collinson, I. Atomic model of the E. coli membrane-bound protein translocation complex SecYEG. J. Mol. Biol. 352, 1035–1043 (2005)

    Article  CAS  PubMed  Google Scholar 

  34. Cooper, D. B., Smith, V. F., Crane, J. M., Roth, H. C., Lilly, A. A. & Randall, L. L. SecA, the motor of the secretion machine, binds diverse partners on one interactive surface. J. Mol. Biol. 382, 74–87 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hartl, F. U., Lecker, S., Schiebel, E., Hendrick, J. P. & Wickner, W. The binding cascade of SecB to SecA to SecY/E mediates preprotein targeting to the E. coli plasma membrane. Cell 63, 269–279 (1990)

    Article  CAS  PubMed  Google Scholar 

  36. Gelis, I. et al. Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR. Cell 131, 756–769 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Prinz, W. A., Spiess, C., Ehrmann, M., Schierle, C. & Beckwith, J. Targeting of signal sequenceless proteins for export in Escherichia coli with altered protein translocase. EMBO J. 15, 5209–5217 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhou, J. & Xu, Z. Structural determinants of SecB recognition by SecA in bacterial protein translocation. Nature Struct. Biol. 10, 942–947 (2003)

    Article  CAS  PubMed  Google Scholar 

  39. Heinrich, S. U., Mothes, W., Brunner, J. & Rapoport, T. A. The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain. Cell 102, 233–244 (2000)

    Article  CAS  PubMed  Google Scholar 

  40. Erlandson, K. J. et al. A role for the two-helix finger of the SecA ATPase in protein translocation. Nature doi: 10.1038/nature07439 (this issue)

  41. Jarosik, G. P. & Oliver, D. B. Isolation and analysis of dominant SecA mutations in Escherichia coli . J. Bacteriol. 173, 860–868 (1991)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Karamanou, S. et al. A molecular switch in SecA protein couples ATP hydrolysis to protein translocation. Mol. Microbiol. 34, 1133–1145 (1999)

    Article  CAS  PubMed  Google Scholar 

  43. Wang, J. et al. Crystal structures of the HslVU peptidase–ATPase complex reveal an ATP-dependent proteolysis mechanism. Structure 9, 177–184 (2001)

    Article  CAS  PubMed  Google Scholar 

  44. Siddiqui, S. M., Sauer, R. T. & Baker, T. A. Role of the processing pore of the ClpX AAA+ ATPase in the recognition and engagement of specific protein substrates. Genes Dev. 18, 369–374 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hinnerwisch, J., Fenton, W. A., Furtak, K. J., Farr, G. W. & Horwich, A. L. Loops in the central channel of ClpA chaperone mediate protein binding, unfolding, and translocation. Cell 121, 1029–1041 (2005)

    Article  CAS  PubMed  Google Scholar 

  46. DeLaBarre, B., Christianson, J. C., Kopito, R. R. & Brunger, A. T. Central pore residues mediate the p97/VCP activity required for ERAD. Mol. Cell 22, 451–462 (2006)

    Article  CAS  PubMed  Google Scholar 

  47. Martin, A., Baker, T. A. & Sauer, R. T. Diverse pore loops of the AAA+ ClpX machine mediate unassisted and adaptor-dependent recognition of ssrA-tagged substrates. Mol. Cell 29, 441–450 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mori, H. & Ito, K. The long α-helix of SecA is important for the ATPase coupling of translocation. J. Biol. Chem. 281, 36249–36256 (2006)

    Article  CAS  PubMed  Google Scholar 

  49. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    CAS  PubMed  Google Scholar 

  50. Storoni, L. C., McCoy, A. J. & Read, R. J. Likelihood-enhanced fast rotation functions. Acta Crystallogr. D 60, 432–438 (2004)

    Article  PubMed  Google Scholar 

  51. McCoy, A. J., Grosse-Kunstleve, R. W., Storoni, L. C. & Read, R. J. Likelihood-enhanced fast translation functions. Acta Crystallogr. D 61, 458–464 (2005)

    Article  PubMed  Google Scholar 

  52. Brunger, A. T. Version 1.2 of the Crystallography and NMR system. Nature Protoc. 2, 2728–2733 (2007)

    Article  CAS  Google Scholar 

  53. Collaborative Computational Project, 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

  54. Cowtan, K. D. & Main, P. Phase combination and cross validation in iterated density-modification calculations. Acta Crystallogr. D 52, 43–48 (1996)

    Article  CAS  PubMed  Google Scholar 

  55. Cowtan, K. D. & Zhang, K. Y. Density modification for macromolecular phase improvement. Prog. Biophys. Mol. Biol. 72, 245–270 (1999)

    Article  CAS  PubMed  Google Scholar 

  56. Terwilliger, T. & Berendzen, J. Automated MAD and MIR structure determination. Acta Crystallogr. D 55, 849–861 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  PubMed  Google Scholar 

  58. Read, R. J. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr. A 42, 140–149 (1986)

    Article  Google Scholar 

  59. DeLaBarre, B. & Brunger, A. T. Considerations for the refinement of low-resolution crystal structures. Acta Crystallogr. D 62, 923–932 (2006)

    Article  PubMed  Google Scholar 

  60. Chen, B. et al. Determining the structure of an unliganded and fully glycosylated SIV gp120 envelope glycoprotein. Structure 13, 197–211 (2005)

    Article  CAS  PubMed  Google Scholar 

  61. DeLano, W. L. The PyMOL Molecular Graphics System. <http://www.pymol.org> (2002)

  62. Glaser, F. et al. ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics 19, 163–164 (2003)

    Article  CAS  PubMed  Google Scholar 

  63. Landau, M. et al. ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res. 33, W299–302 (2005)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank B. van den Berg and P. Bendapudi for initial experiments with the B. subtilis SecA and T. maritima SecY complex, G. Skiniotis for electron microscopy analysis, W. Li for his help with data processing, the staff at Advanced Photon Source beamlines ID-19 and 24ID and at Brookhaven National Laboratory beamline X29, and the SBGrid consortium at Harvard Medical School. We thank A. Brunger and S. Harrison for comments, and A. Brunger, B. van den Berg, W. Li, A. Osborne and S. Schulman for critical reading of the manuscript. The work was supported by a National Institutes of Health grant. T.A.R. is an HHMI investigator. Y.N. is supported by the Damon Runyon Cancer Research Foundation (DRG-#1953-07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom A. Rapoport.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1-S12 with Legends and a Supplementary Discussion (PDF 5672 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmer, J., Nam, Y. & Rapoport, T. Structure of a complex of the ATPase SecA and the protein-translocation channel. Nature 455, 936–943 (2008). https://doi.org/10.1038/nature07335

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07335

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing