Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of opsin in its G-protein-interacting conformation

Abstract

Opsin, the ligand-free form of the G-protein-coupled receptor rhodopsin, at low pH adopts a conformationally distinct, active G-protein-binding state known as Ops*. A synthetic peptide derived from the main binding site of the heterotrimeric G protein—the carboxy terminus of the α-subunit (GαCT)—stabilizes Ops*. Here we present the 3.2 Å crystal structure of the bovine Ops*–GαCT peptide complex. GαCT binds to a site in opsin that is opened by an outward tilt of transmembrane helix (TM) 6, a pairing of TM5 and TM6, and a restructured TM7–helix 8 kink. Contacts along the inner surface of TM5 and TM6 induce an α-helical conformation in GαCT with a C-terminal reverse turn. Main-chain carbonyl groups in the reverse turn constitute the centre of a hydrogen-bonded network, which links the two receptor regions containing the conserved E(D)RY and NPxxY(x)5,6F motifs. On the basis of the Ops*–GαCT structure and known conformational changes in Gα, we discuss signal transfer from the receptor to the G protein nucleotide-binding site.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure of Ops*–GαCT complex.
Figure 2: Comparison of Ops*–GαCT and dark-state rhodopsin structures.
Figure 3: Interactions of Arg 135 of the conserved E(D)RY motif.
Figure 4: Stabilizing effects of GαCT on Ops*.
Figure 5: Conceptual model for signal transmission from the active receptor to the G protein by the Gα C terminus.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

The atomic coordinates and structure factors have been deposited in the Protein Data Bank under accession number 3DQB.

References

  1. Pierce, K. L., Premont, R. T. & Lefkowitz, R. J. Seven-transmembrane receptors. Nature Rev. Mol. Cell Biol. 3, 639–650 (2002)

    Article  CAS  Google Scholar 

  2. Lagerstrom, M. C. & Schioth, H. B. Structural diversity of G protein-coupled receptors and significance for drug discovery. Nature Rev. Drug Discov. 7, 339–357 (2008)

    Article  Google Scholar 

  3. Okada, T., Ernst, O. P., Palczewski, K. & Hofmann, K. P. Activation of rhodopsin: new insights from structural and biochemical studies. Trends Biochem. Sci. 26, 318–324 (2001)

    Article  CAS  Google Scholar 

  4. Knierim, B., Hofmann, K. P., Ernst, O. P. & Hubbell, W. L. Sequence of late molecular events in the activation of rhodopsin. Proc. Natl Acad. Sci. USA 104, 20290–20295 (2007)

    Article  ADS  CAS  Google Scholar 

  5. Lamb, T. D. & Pugh, E. N. Dark adaptation and the retinoid cycle of vision. Prog. Retin. Eye Res. 23, 307–380 (2004)

    Article  CAS  Google Scholar 

  6. Vogel, R. & Siebert, F. Conformations of the active and inactive states of opsin. J. Biol. Chem. 276, 38487–38493 (2001)

    Article  CAS  Google Scholar 

  7. Palczewski, K. et al. Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289, 739–745 (2000)

    Article  ADS  CAS  Google Scholar 

  8. Li, J., Edwards, P. C., Burghammer, M., Villa, C. & Schertler, G. F. Structure of bovine rhodopsin in a trigonal crystal form. J. Mol. Biol. 343, 1409–1438 (2004)

    Article  CAS  Google Scholar 

  9. Okada, T. et al. The retinal conformation and its environment in rhodopsin in light of a new 2.2 Å crystal structure. J. Mol. Biol. 342, 571–583 (2004)

    Article  CAS  Google Scholar 

  10. Murakami, M. & Kouyama, T. Crystal structure of squid rhodopsin. Nature 453, 363–367 (2008)

    Article  ADS  CAS  Google Scholar 

  11. Nakamichi, H. & Okada, T. Local peptide movement in the photoreaction intermediate of rhodopsin. Proc. Natl Acad. Sci. USA 103, 12729–12734 (2006)

    Article  ADS  CAS  Google Scholar 

  12. Salom, D. et al. Crystal structure of a photoactivated deprotonated intermediate of rhodopsin. Proc. Natl Acad. Sci. USA 103, 16123–16128 (2006)

    Article  ADS  CAS  Google Scholar 

  13. Warne, T. et al. Structure of a β1-adrenergic G-protein-coupled receptor. Nature 454, 486–491 (2008)

    Article  ADS  CAS  Google Scholar 

  14. Cherezov, V. et al. High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318, 1258–1265 (2007)

    Article  ADS  CAS  Google Scholar 

  15. Farrens, D. L., Altenbach, C., Yang, K., Hubbell, W. L. & Khorana, H. G. Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274, 768–770 (1996)

    Article  ADS  CAS  Google Scholar 

  16. Sheikh, S. P., Zvyaga, T. A., Lichtarge, O., Sakmar, T. P. & Bourne, H. R. Rhodopsin activation blocked by metal-ion-binding sites linking transmembrane helices C and F. Nature 383, 347–350 (1996)

    Article  ADS  CAS  Google Scholar 

  17. Altenbach, C., Kusnetzow, A. K., Ernst, O. P., Hofmann, K. P. & Hubbell, W. L. High-resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation. Proc. Natl Acad. Sci. USA 105, 7439–7444 (2008)

    Article  ADS  CAS  Google Scholar 

  18. Park, J. H., Scheerer, P., Hofmann, K. P., Choe, H.-W. & Ernst, O. P. Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 454, 183–187 (2008)

    Article  ADS  CAS  Google Scholar 

  19. Fritze, O. et al. Role of the conserved NPxxY(x)5,6F motif in the rhodopsin ground state and during activation. Proc. Natl Acad. Sci. USA 100, 2290–2295 (2003)

    Article  ADS  CAS  Google Scholar 

  20. Hamm, H. E. et al. Site of G protein binding to rhodopsin mapped with synthetic peptides from the α subunit. Science 241, 832–835 (1988)

    Article  ADS  CAS  Google Scholar 

  21. Kisselev, O. G., Ermolaeva, M. V. & Gautam, N. A farnesylated domain in the G protein γ subunit is a specific determinant of receptor coupling. J. Biol. Chem. 269, 21399–21402 (1994)

    CAS  PubMed  Google Scholar 

  22. Oldham, W. M. & Hamm, H. E. Heterotrimeric G protein activation by G-protein-coupled receptors. Nature Rev. Mol. Cell Biol. 9, 60–71 (2008)

    Article  CAS  Google Scholar 

  23. Herrmann, R. et al. Sequence of interactions in receptor-G protein coupling. J. Biol. Chem. 279, 24283–24290 (2004)

    Article  CAS  Google Scholar 

  24. Kisselev, O. G. et al. Light-activated rhodopsin induces structural binding motif in G protein α subunit. Proc. Natl Acad. Sci. USA 95, 4270–4275 (1998)

    Article  ADS  CAS  Google Scholar 

  25. Koenig, B. W. et al. Structure and orientation of a G protein fragment in the receptor bound state from residual dipolar couplings. J. Mol. Biol. 322, 441–461 (2002)

    Article  CAS  Google Scholar 

  26. Arnis, S. & Hofmann, K. P. Two different forms of metarhodopsin II: Schiff base deprotonation precedes proton uptake and signaling state. Proc. Natl Acad. Sci. USA 90, 7849–7853 (1993)

    Article  ADS  CAS  Google Scholar 

  27. Arnis, S., Fahmy, K., Hofmann, K. P. & Sakmar, T. P. A conserved carboxylic acid group mediates light-dependent proton uptake and signaling by rhodopsin. J. Biol. Chem. 269, 23879–23881 (1994)

    CAS  PubMed  Google Scholar 

  28. Acharya, S., Saad, Y. & Karnik, S. S. Transducin-α C-terminal peptide binding site consists of C-D and E-F loops of rhodopsin. J. Biol. Chem. 272, 6519–6524 (1997)

    Article  CAS  Google Scholar 

  29. Janz, J. M. & Farrens, D. L. Rhodopsin activation exposes a key hydrophobic binding site for the transducin α-subunit C terminus. J. Biol. Chem. 279, 29767–29773 (2004)

    Article  CAS  Google Scholar 

  30. Cai, K., Itoh, Y. & Khorana, H. G. Mapping of contact sites in complex formation between transducin and light-activated rhodopsin by covalent crosslinking: use of a photoactivatable reagent. Proc. Natl Acad. Sci. USA 98, 4877–4882 (2001)

    Article  ADS  CAS  Google Scholar 

  31. Lambright, D. G. et al. The 2.0 Å crystal structure of a heterotrimeric G protein. Nature 379, 311–319 (1996)

    Article  ADS  CAS  Google Scholar 

  32. Ridge, K. D. et al. Conformational changes associated with receptor stimulated guanine nucleotide exchange in a heterotrimeric G-protein α-subunit: NMR analysis of GTPγ S-bound states. J. Biol. Chem. 281, 7635–7648 (2006)

    Article  CAS  Google Scholar 

  33. Ernst, O. P. et al. Mutation of the fourth cytoplasmic loop of rhodopsin affects binding of transducin and peptides derived from the carboxyl-terminal sequences of transducin α and γ subunits. J. Biol. Chem. 275, 1937–1943 (2000)

    Article  CAS  Google Scholar 

  34. Edwards, M. D. et al. Pivotal role of the glycine-rich TM3 helix in gating the MscS mechanosensitive channel. Nature Struct. Mol. Biol. 12, 113–119 (2005)

    Article  CAS  Google Scholar 

  35. Hildebrand, P. W. et al. Hydrogen-bonding and packing features of membrane proteins: functional implications. Biophys. J. 94, 1945–1953 (2008)

    Article  ADS  CAS  Google Scholar 

  36. Cohen, G. B., Oprian, D. D. & Robinson, P. R. Mechanism of activation and inactivation of opsin: role of Glu 113 and Lys 296. Biochemistry 31, 12592–12601 (1992)

    Article  CAS  Google Scholar 

  37. De Lean, A., Stadel, J. M. & Lefkowitz, R. J. A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled β-adrenergic receptor. J. Biol. Chem. 255, 7108–7117 (1980)

    CAS  Google Scholar 

  38. Fahmy, K. & Sakmar, T. P. Regulation of the rhodopsin-transducin interaction by a highly conserved carboxylic acid group. Biochemistry 32, 7229–7236 (1993)

    Article  CAS  Google Scholar 

  39. Franke, R. R., König, B., Sakmar, T. P., Khorana, H. G. & Hofmann, K. P. Rhodopsin mutants that bind but fail to activate transducin. Science 250, 123–125 (1990)

    Article  ADS  CAS  Google Scholar 

  40. Hofmann, K. P., Spahn, C. M., Heinrich, R. & Heinemann, U. Building functional modules from molecular interactions. Trends Biochem. Sci. 31, 497–508 (2006)

    Article  CAS  Google Scholar 

  41. Meyer, C. K. et al. Signaling states of rhodopsin. Retinal provides a scaffold for activating proton transfer switches. J. Biol. Chem. 275, 19713–19718 (2000)

    Article  CAS  Google Scholar 

  42. Kefalov, V. J., Crouch, R. K. & Cornwall, M. C. Role of noncovalent binding of 11-cis-retinal to opsin in dark adaptation of rod and cone photoreceptors. Neuron 29, 749–755 (2001)

    Article  CAS  Google Scholar 

  43. Oldham, W. M., Van Eps, N., Preininger, A. M., Hubbell, W. L. & Hamm, H. E. Mechanism of the receptor-catalyzed activation of heterotrimeric G proteins. Nature Struct. Mol. Biol. 13, 772–777 (2006)

    Article  CAS  Google Scholar 

  44. Natochin, M., Moussaif, M. & Artemyev, N. O. Probing the mechanism of rhodopsin-catalyzed transducin activation. J. Neurochem. 77, 202–210 (2001)

    Article  CAS  Google Scholar 

  45. Marin, E. P., Krishna, A. G. & Sakmar, T. P. Disruption of the α5 helix of transducin impairs rhodopsin-catalyzed nucleotide exchange. Biochemistry 41, 6988–6994 (2002)

    Article  CAS  Google Scholar 

  46. Herrmann, R., Heck, M., Henklein, P., Hofmann, K. P. & Ernst, O. P. Signal transfer from GPCRs to G proteins: Role of the Gα N-terminal region in rhodopsin-transducin coupling. J. Biol. Chem. 281, 30234–30241 (2006)

    Article  CAS  Google Scholar 

  47. Nanoff, C. et al. The carboxyl terminus of the Gα-subunit is the latch for triggered activation of heterotrimeric G proteins. Mol. Pharmacol. 69, 397–405 (2006)

    CAS  PubMed  Google Scholar 

  48. Johnston, C. A. & Siderovski, D. P. Structural basis for nucleotide exchange on Gαi subunits and receptor coupling specificity. Proc. Natl Acad. Sci. USA 104, 2001–2006 (2007)

    Article  ADS  CAS  Google Scholar 

  49. Heck, M. & Hofmann, K. P. Maximal rate and nucleotide dependence of rhodopsin-catalyzed transducin activation: initial rate analysis based on a double displacement mechanism. J. Biol. Chem. 276, 10000–10009 (2001)

    Article  CAS  Google Scholar 

  50. Herrmann, R. et al. Rhodopsin-transducin coupling: role of the Gα C-terminus in nucleotide exchange catalysis. Vision Res. 46, 4582–4593 (2006)

    Article  ADS  CAS  Google Scholar 

  51. Sachs, K., Maretzki, D. & Hofmann, K. P. Assays for activation of opsin by all-trans-retinal. Methods Enzymol. 315, 238–251 (2000)

    Article  CAS  Google Scholar 

  52. Murakami, M., Kitahara, R., Gotoh, T. & Kouyama, T. Crystallization and crystal properties of squid rhodopsin. Acta Crystallogr. F 63, 475–479 (2007)

    Article  CAS  Google Scholar 

  53. Jancarik, J. & Kim, S.-H. Sparse matrix sampling: a screening method for crystallization of proteins. J. Appl. Crystallogr. 24, 409–411 (1991)

    Article  CAS  Google Scholar 

  54. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  Google Scholar 

  55. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

  56. Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  CAS  Google Scholar 

  57. Emsley, P. & Cowtan, K. Coot: Model-Building Tools for Molecular Graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  Google Scholar 

  58. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993)

    Article  CAS  Google Scholar 

  59. Hooft, R. W., Vriend, G., Sander, C. & Abola, E. E. Errors in protein structures. Nature 381, 272 (1996)

    Article  ADS  CAS  Google Scholar 

  60. McDonald, I. K. & Thornton, J. M. Satisfying hydrogen bonding potential in proteins. J. Mol. Biol. 238, 777–793 (1994)

    Article  CAS  Google Scholar 

  61. Wallace, A. C., Laskowski, R. A. & Thornton, J. M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 8, 127–134 (1995)

    Article  CAS  Google Scholar 

  62. DeLano, W. L. The PyMOL Molecular Graphics System. <http://www.pymol.org> (2002)

Download references

Acknowledgements

We thank J. Engelmann and C. Koch for technical assistance; P. Henklein for peptide synthesis; C. Enenkel and M. Sommer for critically reading the manuscript; U. Müller and the scientific staff of the Protein Structure Factory and the Freie Universität Berlin at beamlines BL 14.1 and BL 14.2 at BESSY for continuous support of the project. This work was supported by the Deutsche Forschungsgemeinschaft Sfb449 (to O.P.E.), Sfb740 (to O.P.E. and K.P.H.), DFG-KOSEF international cooperation ER 294/1-1 (to O.P.E.) and F01-2004-000-10054-0 (to H.-W.C.), and CBNU funds for overseas research 2006–2007 (to H.-W.C.) and a fellowship of the Leibniz Graduate School of Molecular Biophysics, Berlin (to Y.J.K.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui-Woog Choe, Klaus Peter Hofmann or Oliver P. Ernst.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-9 with Legends, Supplementary Tables 1-2 and Supplementary References (PDF 3737 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheerer, P., Park, J., Hildebrand, P. et al. Crystal structure of opsin in its G-protein-interacting conformation. Nature 455, 497–502 (2008). https://doi.org/10.1038/nature07330

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07330

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing