Activity-dependent regulation of inhibitory synapse development by Npas4

Abstract

Neuronal activity regulates the development and maturation of excitatory and inhibitory synapses in the mammalian brain. Several recent studies have identified signalling networks within neurons that control excitatory synapse development. However, less is known about the molecular mechanisms that regulate the activity-dependent development of GABA (γ-aminobutyric acid)-releasing inhibitory synapses. Here we report the identification of a transcription factor, Npas4, that plays a role in the development of inhibitory synapses by regulating the expression of activity-dependent genes, which in turn control the number of GABA-releasing synapses that form on excitatory neurons. These findings demonstrate that the activity-dependent gene program regulates inhibitory synapse development, and suggest a new role for this program in controlling the homeostatic balance between synaptic excitation and inhibition.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Npas4 expression is regulated by neuronal activity in vitro and in vivo.
Figure 2: Npas4 regulates the number of GABAergic synapses in cultured hippocampal neurons.
Figure 3: Npas4 regulates GABAergic synapse development in organotypic hippocampal slices.
Figure 4: Npas4 has no effect on excitatory synaptogenesis but affects excitatory/inhibitory balance in neural circuits.
Figure 5: Npas4 controls a program of gene expression that regulates GABAergic synapses.
Figure 6: Knockdown of BDNF partially attenuates the ability of the Npas4-minigene to elevate GABAergic synapses.

Accession codes

Primary accessions

Gene Expression Omnibus

Data deposits

Data have been placed in the GEO database under accession numbers GSE11256 and GSE11258.

References

  1. 1

    Katz, L. C. & Shatz, C. J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996)

    CAS  Article  ADS  Google Scholar 

  2. 2

    Spitzer, N. C. Electrical activity in early neuronal development. Nature 444, 707–712 (2006)

    CAS  Article  ADS  Google Scholar 

  3. 3

    Wong, R. O. & Ghosh, A. Activity-dependent regulation of dendritic growth and patterning. Nature Rev. Neurosci. 3, 803–812 (2002)

    CAS  Article  Google Scholar 

  4. 4

    Zito, K. & Svoboda, K. Activity-dependent synaptogenesis in the adult mammalian cortex. Neuron 35, 1015–1017 (2002)

    CAS  Article  Google Scholar 

  5. 5

    Ben-Ari, Y. Excitatory actions of GABA during development: the nature of the nurture. Nature Rev. Neurosci. 3, 728–739 (2002)

    CAS  Article  Google Scholar 

  6. 6

    Kenet, T., Froemke, R. C., Schreiner, C. E., Pessah, I. N. & Merzenich, M. M. Perinatal exposure to a noncoplanar polychlorinated biphenyl alters tonotopy, receptive fields, and plasticity in rat primary auditory cortex. Proc. Natl Acad. Sci. USA 104, 7646–7651 (2007)

    CAS  Article  ADS  Google Scholar 

  7. 7

    Maffei, A., Nelson, S. B. & Turrigiano, G. G. Selective reconfiguration of layer 4 visual cortical circuitry by visual deprivation. Nature Neurosci. 7, 1353–1359 (2004)

    CAS  Article  Google Scholar 

  8. 8

    Buschges, A. & Manira, A. E. Sensory pathways and their modulation in the control of locomotion. Curr. Opin. Neurobiol. 8, 733–739 (1998)

    CAS  Article  Google Scholar 

  9. 9

    Brown, P., Ridding, M. C., Werhahn, K. J., Rothwell, J. C. & Marsden, C. D. Abnormalities of the balance between inhibition and excitation in the motor cortex of patients with cortical myoclonus. Brain 119, 309–317 (1996)

    Article  Google Scholar 

  10. 10

    Cline, H. Synaptogenesis: a balancing act between excitation and inhibition. Curr. Biol. 15, R203–R205 (2005)

    CAS  Article  Google Scholar 

  11. 11

    Mohler, H. GABAA receptors in central nervous system disease: anxiety, epilepsy, and insomnia. J. Recept. Signal Transduct. Res. 26, 731–740 (2006)

    CAS  Article  Google Scholar 

  12. 12

    Rubenstein, J. L. & Merzenich, M. M. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav. 2, 255–267 (2003)

    CAS  Article  Google Scholar 

  13. 13

    Wassef, A., Baker, J. & Kochan, L. D. GABA and schizophrenia: a review of basic science and clinical studies. J. Clin. Psychopharmacol. 23, 601–640 (2003)

    CAS  Article  Google Scholar 

  14. 14

    Burrone, J., O’Byrne, M. & Murthy, V. N. Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons. Nature 420, 414–418 (2002)

    CAS  Article  ADS  Google Scholar 

  15. 15

    Malinow, R. & Malenka, R. C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25, 103–126 (2002)

    CAS  Article  Google Scholar 

  16. 16

    Turrigiano, G. G., Leslie, K. R., Desai, N. S., Rutherford, L. C. & Nelson, S. B. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391, 892–896 (1998)

    CAS  Article  ADS  Google Scholar 

  17. 17

    Benevento, L. A., Bakkum, B. W. & Cohen, R. S. Gamma-aminobutyric acid and somatostatin immunoreactivity in the visual cortex of normal and dark-reared rats. Brain Res. 689, 172–182 (1995)

    CAS  Article  Google Scholar 

  18. 18

    Chattopadhyaya, B. et al. Experience and activity-dependent maturation of perisomatic GABAergic innervation in primary visual cortex during a postnatal critical period. J. Neurosci. 24, 9598–9611 (2004)

    CAS  Article  Google Scholar 

  19. 19

    Foeller, E. & Feldman, D. E. Synaptic basis for developmental plasticity in somatosensory cortex. Curr. Opin. Neurobiol. 14, 89–95 (2004)

    CAS  Article  Google Scholar 

  20. 20

    Marty, S., Wehrle, R. & Sotelo, C. Neuronal activity and brain-derived neurotrophic factor regulate the density of inhibitory synapses in organotypic slice cultures of postnatal hippocampus. J. Neurosci. 20, 8087–8095 (2000)

    CAS  Article  Google Scholar 

  21. 21

    Micheva, K. D. & Beaulieu, C. Development and plasticity of the inhibitory neocortical circuitry with an emphasis on the rodent barrel field cortex: a review. Can. J. Physiol. Pharmacol. 75, 470–478 (1997)

    CAS  Article  Google Scholar 

  22. 22

    Seil, F. J. & Drake-Baumann, R. Activity-dependent changes in “transplanted” cerebellar cultures. Exp. Neurol. 138, 327–337 (1996)

    CAS  Article  Google Scholar 

  23. 23

    Hensch, T. K. Critical period plasticity in local cortical circuits. Nature Rev. Neurosci. 6, 877–888 (2005)

    CAS  Article  Google Scholar 

  24. 24

    Turrigiano, G. G. & Nelson, S. B. Homeostatic plasticity in the developing nervous system. Nature Rev. Neurosci. 5, 97–107 (2004)

    CAS  Article  Google Scholar 

  25. 25

    Benson, D. L. & Cohen, P. A. Activity-independent segregation of excitatory and inhibitory synaptic terminals in cultured hippocampal neurons. J. Neurosci. 16, 6424–6432 (1996)

    CAS  Article  Google Scholar 

  26. 26

    Nedivi, E., Hevroni, D., Naot, D., Israeli, D. & Citri, Y. Numerous candidate plasticity-related genes revealed by differential cDNA cloning. Nature 363, 718–722 (1993)

    CAS  Article  ADS  Google Scholar 

  27. 27

    Worley, P. F., Cole, A. J., Saffen, D. W. & Baraban, J. M. Regulation of immediate early genes in brain: role of NMDA receptor activation. Prog. Brain Res. 86, 277–285 (1990)

    CAS  Article  Google Scholar 

  28. 28

    Ooe, N., Saito, K., Mikami, N., Nakatuka, I. & Kaneko, H. Identification of a novel basic helix-loop-helix-PAS factor, NXF, reveals a Sim2 competitive, positive regulatory role in dendritic-cytoskeleton modulator drebrin gene expression. Mol. Cell. Biol. 24, 608–616 (2004)

    CAS  Article  Google Scholar 

  29. 29

    Flood, W. D., Moyer, R. W., Tsykin, A., Sutherland, G. R. & Koblar, S. A. Nxf and Fbxo33: novel seizure-responsive genes in mice. Eur. J. Neurosci. 20, 1819–1826 (2004)

    Article  Google Scholar 

  30. 30

    Hester, I. et al. Transient expression of Nxf, a bHLH-PAS transactivator induced by neuronal preconditioning, confers neuroprotection in cultured cells. Brain Res. 1135, 1–11 (2007)

    CAS  Article  ADS  Google Scholar 

  31. 31

    Shamloo, M. et al. Npas4, a novel helix-loop-helix PAS domain protein, is regulated in response to cerebral ischemia. Eur. J. Neurosci. 24, 2705–2720 (2006)

    Article  Google Scholar 

  32. 32

    Fletcher, T. L., Cameron, P., De Camilli, P. & Banker, G. The distribution of synapsin I and synaptophysin in hippocampal neurons developing in culture. J. Neurosci. 11, 1617–1626 (1991)

    CAS  Article  Google Scholar 

  33. 33

    Huang, Z. J., Di Cristo, G. & Ango, F. Development of GABA innervation in the cerebral and cerebellar cortices. Nature Rev. Neurosci. 8, 673–686 (2007)

    CAS  Article  Google Scholar 

  34. 34

    Gomeza, J. et al. Deletion of the mouse glycine transporter 2 results in a hyperekplexia phenotype and postnatal lethality. Neuron 40, 797–806 (2003)

    CAS  Article  Google Scholar 

  35. 35

    Kash, S. F. et al. Epilepsy in mice deficient in the 65-kDa isoform of glutamic acid decarboxylase. Proc. Natl Acad. Sci. USA 94, 14060–14065 (1997)

    CAS  Article  ADS  Google Scholar 

  36. 36

    Kash, S. F., Tecott, L. H., Hodge, C. & Baekkeskov, S. Increased anxiety and altered responses to anxiolytics in mice deficient in the 65-kDa isoform of glutamic acid decarboxylase. Proc. Natl Acad. Sci. USA 96, 1698–1703 (1999)

    CAS  Article  ADS  Google Scholar 

  37. 37

    Huang, Z. J. et al. BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98, 739–755 (1999)

    CAS  Article  Google Scholar 

  38. 38

    Rutherford, L. C., DeWan, A., Lauer, H. M. & Turrigiano, G. G. Brain-derived neurotrophic factor mediates the activity-dependent regulation of inhibition in neocortical cultures. J. Neurosci. 17, 4527–4535 (1997)

    CAS  Article  Google Scholar 

  39. 39

    Seil, F. J. & Drake-Baumann, R. TrkB receptor ligands promote activity-dependent inhibitory synaptogenesis. J. Neurosci. 20, 5367–5373 (2000)

    CAS  Article  Google Scholar 

  40. 40

    Aid, T., Kazantseva, A., Piirsoo, M., Palm, K. & Timmusk, T. Mouse and rat BDNF gene structure and expression revisited. J. Neurosci. Res. 85, 525–535 (2007)

    CAS  Article  Google Scholar 

  41. 41

    Liu, Q. R. et al. Rodent BDNF genes, novel promoters, novel splice variants, and regulation by cocaine. Brain Res. 1067, 1–12 (2006)

    CAS  Article  ADS  Google Scholar 

  42. 42

    Tao, X., Finkbeiner, S., Arnold, D. B., Shaywitz, A. J. & Greenberg, M. E. Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron 20, 709–726 (1998)

    CAS  Article  Google Scholar 

  43. 43

    Zhou, P. et al. Polarized signaling endosomes coordinate BDNF-induced chemotaxis of cerebellar precursors. Neuron 55, 53–68 (2007)

    CAS  Article  Google Scholar 

  44. 44

    Kohara, K. et al. A local reduction in cortical GABAergic synapses after a loss of endogenous brain-derived neurotrophic factor, as revealed by single-cell gene knock-out method. J. Neurosci. 27, 7234–7244 (2007)

    CAS  Article  Google Scholar 

  45. 45

    Chubykin, A. A. et al. Activity-dependent validation of excitatory versus inhibitory synapses by neuroligin-1 versus neuroligin-2. Neuron 54, 919–931 (2007)

    CAS  Article  Google Scholar 

  46. 46

    Xia, Z., Dudek, H., Miranti, C. K. & Greenberg, M. E. Calcium influx via the NMDA receptor induces immediate early gene transcription by a MAP kinase/ERK-dependent mechanism. J. Neurosci. 16, 5425–5436 (1996)

    CAS  Article  Google Scholar 

  47. 47

    Paradis, S. et al. An RNAi-based approach identifies molecules required for glutamatergic and GABAergic synapse development. Neuron 53, 217–232 (2007)

    CAS  Article  Google Scholar 

  48. 48

    Stoppini, L., Buchs, P. A. & Muller, D. A simple method for organotypic cultures of nervous tissue. J. Neurosci. Methods 37, 173–182 (1991)

    CAS  Article  Google Scholar 

  49. 49

    Li, C. & Wong, W. H. Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc. Natl Acad. Sci. USA 98, 31–36 (2001)

    CAS  Article  ADS  Google Scholar 

  50. 50

    Flavell, S. W. et al. Activity-dependent regulation of MEF2 transcription factors suppresses excitatory synapse number. Science 311, 1008–1012 (2006)

    CAS  Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank members of the Greenberg laboratory for suggestions; S. Paradis, J. M. Gray, S. S. Margolis, J. Zieg and C. M. Fletcher for reading the manuscript; S. Vasquez for preparing primary neuronal cell cultures; M. Thompson, Y. Zhou and H. Ye for assistance in generating Npas4-/- mice; T. Diefenbach and the Neurobiology Program Imaging Center for assistance with confocal microscopy; M. Fagiolini for help with dissection of the visual cortex; and X. J. Liu and C. Chen for help with electrophysiology. M.E.G. acknowledges the generous support of the F. M. Kirby Foundation to the Neurobiology Program of the Children’s Hospital and support from the Nancy Lurie Marks Family Foundation. This work was supported by a Lefler Foundation postdoctoral fellowship (Y.L.), a Ruth L. Kirschstein National Research Service Award and a Helen Hay Whitney postdoctoral fellowship (B.L.B.), a National Science Foundation Graduate Research Fellowship (A.D.L.), the Jane Coffin Childs Memorial Fund (T.-K.K.) and Mental Retardation Research Center grant HD18655 and National Institutes of Health grants NS27572 and NS48276 (M.E.G.).

Author Contributions Y.L. and M.E.G. conceived and designed the experiments and wrote the manuscript. Y.L. performed or participated in each of the experiments described in the manuscript. B.L.B. performed the electrophysiological recordings and contributed to the writing of the manuscript. J.L.H. quantified Npas4 mRNA levels for the light stimulation experiment, generated the Npas4-minigene construct and performed the luciferase assay to characterize it, managed the Npas4 animal colony and provided extensive technical support. A.D.L. performed immunocytochemistry for the light stimulation experiment and confocal imaging of neurons in the synapse assay with Npas4-RNAi. A.C.K. provided technical support during the early phase of the study and helped generate many reagents used in this study including the Npas4 antibody, Npas4 knockout construct and Npas4-RNAi lentivirus. T.-K.K. performed the chromatin immunoprecipitation experiments. L.S.H. helped generate the Npas4 antibody. A.N.M. performed the initial chromatin immunoprecipitation experiments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael E. Greenberg.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-7 with Legends and the Supplementary List. (PDF 6275 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lin, Y., Bloodgood, B., Hauser, J. et al. Activity-dependent regulation of inhibitory synapse development by Npas4. Nature 455, 1198–1204 (2008). https://doi.org/10.1038/nature07319

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing