Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing

Abstract

DNA ends exposed after introduction of double-strand breaks (DSBs) undergo 5′–3′ nucleolytic degradation to generate single-stranded DNA, the substrate for binding by the Rad51 protein to initiate homologous recombination. This process is poorly understood in eukaryotes, but several factors have been implicated, including the Mre11 complex (Mre11–Rad50–Xrs2/NBS1), Sae2/CtIP/Ctp1 and Exo1. Here we demonstrate that yeast Exo1 nuclease and Sgs1 helicase function in alternative pathways for DSB processing. Novel, partially resected intermediates accumulate in a double mutant lacking Exo1 and Sgs1, which are poor substrates for homologous recombination. The early processing step that generates partly resected intermediates is dependent on Sae2. When Sae2 is absent, in addition to Exo1 and Sgs1, unprocessed DSBs accumulate and homology-dependent repair fails. These results suggest a two-step mechanism for DSB processing during homologous recombination. First, the Mre11 complex and Sae2 remove a small oligonucleotide(s) from the DNA ends to form an early intermediate. Second, Exo1 and/or Sgs1 rapidly process this intermediate to generate extensive tracts of single-stranded DNA that serve as substrate for Rad51.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sae2 and Exo1 function at different steps in DSB resection.
Figure 2: Sgs1 and Exo1 function redundantly in DSB resection.
Figure 3: Single-stranded intermediates fail to form in the absence of Exo1 and Sgs1.
Figure 4: Sae2 is required for creating the minimally resected intermediates.
Figure 5: Two-step mechanism for DSB resection.

Similar content being viewed by others

References

  1. Lee, S. E. et al. Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94, 399–409 (1998)

    Article  CAS  Google Scholar 

  2. Lisby, M., Barlow, J. H., Burgess, R. C. & Rothstein, R. Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118, 699–713 (2004)

    Article  CAS  Google Scholar 

  3. Nelms, B. E., Maser, R. S., MacKay, J. F., Lagally, M. G. & Petrini, J. H. In situ visualization of DNA double-strand break repair in human fibroblasts. Science 280, 590–592 (1998)

    Article  ADS  CAS  Google Scholar 

  4. Krogh, B. O. & Symington, L. S. Recombination proteins in yeast. Annu. Rev. Genet. 38, 233–271 (2004)

    Article  CAS  Google Scholar 

  5. Llorente, B. & Symington, L. S. The Mre11 nuclease is not required for 5′ to 3′ resection at multiple HO-induced double-strand breaks. Mol. Cell. Biol. 24, 9682–9694 (2004)

    Article  CAS  Google Scholar 

  6. Lobachev, K. S., Gordenin, D. A. & Resnick, M. A. The Mre11 complex is required for repair of hairpin-capped double-strand breaks and prevention of chromosome rearrangements. Cell 108, 183–193 (2002)

    Article  CAS  Google Scholar 

  7. Rattray, A. J., McGill, C. B., Shafer, B. K. & Strathern, J. N. Fidelity of mitotic double-strand-break repair in Saccharomyces cerevisiae: a role for SAE2/COM1 . Genetics 158, 109–122 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Clerici, M., Mantiero, D., Lucchini, G. & Longhese, M. P. The Saccharomyces cerevisiae Sae2 protein promotes resection and bridging of double strand break ends. J. Biol. Chem. 280, 38631–38638 (2005)

    Article  CAS  Google Scholar 

  9. Limbo, O. et al. Ctp1 is a cell-cycle-regulated protein that functions with Mre11 complex to control double-strand break repair by homologous recombination. Mol. Cell 28, 134–146 (2007)

    Article  CAS  Google Scholar 

  10. Sartori, A. A. et al. Human CtIP promotes DNA end resection. Nature 450, 509–514 (2007)

    Article  ADS  CAS  Google Scholar 

  11. Tran, P. T., Erdeniz, N., Symington, L. S. & Liskay, R. M. EXO1-A multi-tasking eukaryotic nuclease. DNA Repair (Amst.) 3, 1549–1559 (2004)

    Article  CAS  Google Scholar 

  12. Clerici, M., Mantiero, D., Lucchini, G. & Longhese, M. P. The Saccharomyces cerevisiae Sae2 protein negatively regulates DNA damage checkpoint signalling. EMBO Rep. 7, 212–218 (2006)

    Article  CAS  Google Scholar 

  13. Hickson, I. D. RecQ helicases: caretakers of the genome. Nature Rev. Cancer 3, 169–178 (2003)

    Article  CAS  Google Scholar 

  14. Vaze, M. B. et al. Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase. Mol. Cell 10, 373–385 (2002)

    Article  CAS  Google Scholar 

  15. Mozlin, A. M., Fung, C. W. & Symington, L. S. Role of the Saccharomyces cerevisiae Rad51 paralogs in sister chromatid recombination. Genetics 178, 113–126 (2008)

    Article  CAS  Google Scholar 

  16. Ivanov, E. L., Sugawara, N., Fishman-Lobell, J. & Haber, J. E. Genetic requirements for the single-strand annealing pathway of double-strand break repair in Saccharomyces cerevisiae . Genetics 142, 693–704 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Amundsen, S. K. & Smith, G. R. Interchangeable parts of the Escherichia coli recombination machinery. Cell 112, 741–744 (2003)

    Article  CAS  Google Scholar 

  18. Gangloff, S., McDonald, J. P., Bendixen, C., Arthur, L. & Rothstein, R. The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: a potential eukaryotic reverse gyrase. Mol. Cell. Biol. 14, 8391–8398 (1994)

    Article  CAS  Google Scholar 

  19. Watt, P. M., Louis, E. J., Borts, R. H. & Hickson, I. D. Sgs1: a eukaryotic homolog of E. coli RecQ that interacts with topoisomerase II in vivo and is required for faithful chromosome segregation. Cell 81, 253–260 (1995)

    Article  CAS  Google Scholar 

  20. Pan, X. et al. A DNA integrity network in the yeast Saccharomyces cerevisiae . Cell 124, 1069–1081 (2006)

    Article  CAS  Google Scholar 

  21. White, C. I. & Haber, J. E. Intermediates of recombination during mating type switching in Saccharomyces cerevisiae . EMBO J. 9, 663–673 (1990)

    Article  CAS  Google Scholar 

  22. Mullen, J. R., Kaliraman, V. & Brill, S. J. Bipartite structure of the SGS1 DNA helicase in Saccharomyces cerevisiae . Genetics 154, 1101–1114 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Jazayeri, A., Balestrini, A., Garner, E., Haber, J. E. & Costanzo, V. Mre11-Rad50-Nbs1-dependent processing of DNA breaks generates oligonucleotides that stimulate ATM activity. EMBO J. 27, 1953–1962 (2008)

    Article  CAS  Google Scholar 

  24. Lengsfeld, B. M., Rattray, A. J., Bhaskara, V., Ghirlando, R. & Paull, T. T. Sae2 is an endonuclease that processes hairpin DNA cooperatively with the Mre11/Rad50/Xrs2 complex. Mol. Cell 28, 638–651 (2007)

    Article  CAS  Google Scholar 

  25. Baron, U. & Bujard, H. Tet repressor-based system for regulated gene expression in eukaryotic cells: principles and advances. Methods Enzymol. 327, 401–421 (2000)

    Article  CAS  Google Scholar 

  26. Bennett, R. J., Keck, J. L. & Wang, J. C. Binding specificity determines polarity of DNA unwinding by the Sgs1 protein of S. cerevisiae . J. Mol. Biol. 289, 235–248 (1999)

    Article  CAS  Google Scholar 

  27. Budd, M. E. et al. A network of multi-tasking proteins at the DNA replication fork preserves genome stability. PLoS Genet 1, e61 (2005)

    Article  Google Scholar 

  28. Gangloff, S., Soustelle, C. & Fabre, F. Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases. Nature Genet. 25, 192–194 (2000)

    Article  CAS  Google Scholar 

  29. van Brabant, A. J. et al. Binding and melting of D-loops by the Bloom syndrome helicase. Biochemistry 39, 14617–14625 (2000)

    Article  CAS  Google Scholar 

  30. Wu, L. & Hickson, I. D. The Bloom’s syndrome helicase suppresses crossing over during homologous recombination. Nature 426, 870–874 (2003)

    Article  ADS  CAS  Google Scholar 

  31. Karmakar, P. et al. BLM is an early responder to DNA double-strand breaks. Biochem. Biophys. Res. Commun. 348, 62–69 (2006)

    Article  CAS  Google Scholar 

  32. Zou, H. & Rothstein, R. Holliday junctions accumulate in replication mutants via a RecA homolog-independent mechanism. Cell 90, 87–96 (1997)

    Article  CAS  Google Scholar 

  33. Borde, V., Wu, T. C. & Lichten, M. Use of a recombination reporter insert to define meiotic recombination domains on chromosome III of Saccharomyces cerevisiae . Mol. Cell. Biol. 19, 4832–4842 (1999)

    Article  CAS  Google Scholar 

  34. Goldstein, A. L. & McCusker, J. H. Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae . Yeast 15, 1541–1553 (1999)

    Article  CAS  Google Scholar 

  35. Longtine, M. S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae . Yeast 14, 953–961 (1998)

    Article  CAS  Google Scholar 

  36. Sherman, F., Fink, G. & Hicks, J. Methods in Yeast Genetics (Cold Spring Harbor Laboratory, 1986)

    Google Scholar 

  37. Nickoloff, J. A., Singer, J. D., Hoekstra, M. F. & Heffron, F. Double-strand breaks stimulate alternative mechanisms of recombination repair. J. Mol. Biol. 207, 527–541 (1989)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Lichten, J. McCusker, A. Rattray and R. Rothstein for gifts of strains and plasmids, and W. K. Holloman and R. Rothstein for comments on the manuscript. This study was supported by a grant from the National Institutes of Health.

Author Contributions E.P.M. and L.S.S. designed the experiments and wrote the paper; E.P.M. performed the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorraine S. Symington.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1-S5 with legends and Supplementary Table with References. (PDF 1662 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mimitou, E., Symington, L. Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 455, 770–774 (2008). https://doi.org/10.1038/nature07312

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07312

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing