Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Solid-state quantum memory using the 31P nuclear spin


The transfer of information between different physical forms—for example processing entities and memory—is a central theme in communication and computation. This is crucial in quantum computation1, where great effort2 must be taken to protect the integrity of a fragile quantum bit (qubit). However, transfer of quantum information is particularly challenging, as the process must remain coherent at all times to preserve the quantum nature of the information3. Here we demonstrate the coherent transfer of a superposition state in an electron-spin ‘processing’ qubit to a nuclear-spin ‘memory’ qubit, using a combination of microwave and radio-frequency pulses applied to 31P donors in an isotopically pure 28Si crystal4,5. The state is left in the nuclear spin on a timescale that is long compared with the electron decoherence time, and is then coherently transferred back to the electron spin, thus demonstrating the 31P nuclear spin as a solid-state quantum memory. The overall store–readout fidelity is about 90 per cent, with the loss attributed to imperfect rotations, and can be improved through the use of composite pulses6. The coherence lifetime of the quantum memory element at 5.5 K exceeds 1 s.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The level structure of the coupled electron and nuclear spins and scheme for the transfer of a logical qubit within the two physical spin qubits.
Figure 2: Coherent storage of an electron-spin state in a nuclear-spin state, using a 31 P-doped 28 Si-enriched silicon single crystal.
Figure 3: Observing the nuclear-spin coherence during the storage process.
Figure 4: Density matrix tomography for original and recovered states.


  1. Deutsch, D. Quantum theory, the Church-Turing principle and the universal quantum computer. Phil. Trans. R. Soc. Lond. A 400, 97–117 (1985)

    MathSciNet  MATH  Google Scholar 

  2. Steane, A. M. Efficient fault-tolerant quantum computing. Nature 399, 124–126 (1999)

    CAS  ADS  Article  Google Scholar 

  3. Julsgaard, B., Sherson, J., Cirac, J. I., Fiuráek, J. & Polzik, E. S. Experimental demonstration of quantum memory for light. Nature 432, 482–486 (2004)

    CAS  ADS  Article  Google Scholar 

  4. Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998)

    CAS  ADS  Article  Google Scholar 

  5. Tyryshkin, A. M. et al. Coherence of spin qubits in silicon. J. Phys. Condens. Matter 18, S783–S794 (2006)

    CAS  Article  Google Scholar 

  6. Morton, J. J. L. et al. High fidelity single qubit operations using pulsed electron paramagnetic resonance. Phys. Rev. Lett. 95, 200501 (2005)

    ADS  Article  Google Scholar 

  7. Wootters, W. K. & Zurek, W. H. A single quantum cannot be cloned. Nature 299, 802–803 (1982)

    CAS  ADS  Article  Google Scholar 

  8. Kielpinski, D. et al. A decoherence-free quantum memory using trapped ions. Science 291, 1013–1015 (2001)

    CAS  ADS  Article  Google Scholar 

  9. Dutt, M. V. G. et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007)

    Article  Google Scholar 

  10. Dobrovitski, V. V., Taylor, J. M. & Lukin, M. D. Long-lived memory for electronic spin in a quantum dot: Numerical analysis. Phys. Rev. B 73, 245318 (2006)

    ADS  Article  Google Scholar 

  11. Tyryshkin, A. M., Lyon, S. A., Astashkin, A. V. & Raitsimring, A. M. Electron spin relaxation times of phosphorus donors in silicon. Phys. Rev. B 68, 193207 (2003)

    ADS  Article  Google Scholar 

  12. Tyryshkin, A. M., Morton, J. J. L., Ardavan, A. & Lyon, S. A. Davies electron-nuclear double resonance revisited: Enhanced sensitivity and nuclear spin relaxation. J. Chem. Phys. 124, 234508 (2006)

    ADS  Article  Google Scholar 

  13. Stegner, A. R. et al. Electrical detection of coherent 31P spin quantum states. Nature Phys. 2, 835–838 (2006)

    CAS  ADS  Article  Google Scholar 

  14. McCamey, D. R. et al. Electrically detected magnetic resonance in ion-implanted Si:P nanostructures. Appl. Phys. Lett. 89, 182115 (2006)

    ADS  Article  Google Scholar 

  15. Lo, C. C. et al. Spin-dependent scattering off neutral antimony donors in 28Si field-effect transistors. Appl. Phys. Lett. 91, 242106 (2007); Appl. Phys. Lett. 92, 109908 (2008)

    ADS  Article  Google Scholar 

  16. Hirsch, M. J. & Holcomb, D. F. NMR study of Si:As and Si:P near the metal-insulator transition. Phys. Rev. B 33, 2520–2529 (1986)

    CAS  ADS  Article  Google Scholar 

  17. Feher, G. Electron spin resonance experiments on donors in silicon I: Electronic structure of donors by the electron nuclear double resonance technique. Phys. Rev. 114, 1219–1244 (1959)

    CAS  ADS  Article  Google Scholar 

  18. Mehring, M., Mende, J. & Scherer, W. Entanglement between an electron and a nuclear spin 1/2. Phys. Rev. Lett. 90, 153001 (2003)

    CAS  ADS  Article  Google Scholar 

  19. Viola, L. & Lloyd, S. Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 58, 2733–2744 (1998)

    CAS  ADS  MathSciNet  Article  Google Scholar 

  20. Morton, J. J. L. et al. Bang-bang control of fullerene qubits using ultra-fast phase gates. Nature Phys. 2, 40–43 (2006)

    CAS  ADS  Article  Google Scholar 

  21. Höfer, P., Grupp, A. & Mehring, M. High-resolution time-domain electron-nuclear-sublevel spectroscopy by pulsed coherence transfer. Phys. Rev. A 33, 3519–3522 (1986)

    ADS  Article  Google Scholar 

  22. Morton, J. J. L. et al. The N@C60 nuclear spin qubit: Bang-bang decoupling and ultrafast phase gates, Phys. Status Solidi B 243, 3028–3031 (2006)

    CAS  ADS  Article  Google Scholar 

  23. Morton, J. J. L. et al. Measuring errors in single-qubit rotations by pulsed electron paramagnetic resonance. Phys. Rev. A 71, 012332 (2005)

    ADS  Article  Google Scholar 

  24. Cummins, H. K., Llewellyn, G. & Jones, J. A. Tackling systematic errors in quantum logic gates with composite rotations. Phys. Rev. A 67, 042308 (2003)

    ADS  Article  Google Scholar 

  25. Taylor, J. M. et al. Fault-tolerant architecture for quantum computation using electrically controlled semiconductor spins. Nature Phys. 1, 177–183 (2005)

    CAS  ADS  Article  Google Scholar 

  26. Thaker, D. D., Metodi, T. S., Cross, A. W., Chuang, I. L. & Chong, F. T. in ISCA ’06 378–390 (Proc. 33rd Internat. Symp. Computer Architecture, IEEE, 2006)

    Google Scholar 

  27. Rabl, P. et al. Hybrid quantum processors: Molecular ensembles as quantum memory for solid state circuits. Phys. Rev. Lett. 97, 033003 (2006)

    CAS  ADS  Article  Google Scholar 

  28. Nowack, K. C., Koppens, F. H. L., Nazarov, Y. V. & Vandersypen, L. M. K. Coherent control of a single electron spin with electric fields. Science 318, 1430–1433 (2007)

    CAS  ADS  Article  Google Scholar 

  29. Sarovar, M., Young, K. C., Schenkel, T. & Whaley, K. B. Quantum non-demolition measurements of single spins in semiconductors. Preprint at 〈〉 (2007)

  30. Ager, J. W. et al. High-purity, isotopically enriched bulk silicon. J. Electrochem. Soc. 152, G448–G451 (2005)

    CAS  Article  Google Scholar 

Download references


We thank G. A. D. Briggs for comments and support and R. Weber, P. Höfer and Bruker Biospin for support with instrumentation. We thank P. Weaver of Advanced Silicon Materials, Inc. for zone-refining and H. Riemann of the Institut für Kristallzüchtung for float-zone processing of the 28Si crystals used in this work. This research is supported by the National Security Agency (MOD 713106A) and the EPSRC through the Quantum Information Processing Interdisciplinary Research Collaboration (GR/S82176/01) and CAESR (EP/D048559/1). J.J.L.M. is supported by St John’s College, Oxford. A.A. and B.W.L. are supported by the Royal Society. Work at Princeton received support from the US National Science Foundation through the Princeton MRSEC (DMR-0213706). Work at Lawrence Berkeley National Laboratory was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the US Department of Energy (DE-AC02-05CH11231).

Author information

Authors and Affiliations


Corresponding author

Correspondence to John J. L. Morton.

Supplementary information

Supplementary Information

This file contains (A) calculations which confirm the effect of radiofrequency and microwave phases stated in the main text; (B) electron and nuclear relaxation model; and (C) density matrix tomography for all initial states (incorporating Supplementary Figures 1-3). (PDF 863 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Morton, J., Tyryshkin, A., Brown, R. et al. Solid-state quantum memory using the 31P nuclear spin. Nature 455, 1085–1088 (2008).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing