Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Non-random segregation of sister chromosomes in Escherichia coli

Abstract

It has long been known that the 5′ to 3′ polarity of DNA synthesis results in both a leading and lagging strand at all replication forks1. Until now, however, there has been no evidence that leading or lagging strands are spatially organized in any way within a cell. Here we show that chromosome segregation in Escherichia coli is not random but is driven in a manner that results in the leading and lagging strands being addressed to particular cellular destinations. These destinations are consistent with the known patterns of chromosome segregation2,3. Our work demonstrates a new level of organization relating to the replication and segregation of the E. coli chromosome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distinguishing leading and lagging strands.
Figure 2: Visualization of construct.
Figure 3: Construct degradation and localization.
Figure 4: Induction of SbcCD in cephalexin-induced filaments.

Similar content being viewed by others

References

  1. McInerney, P., Johnson, A., Katz, F. & O’Donnell, M. Characterization of a triple DNA polymerase replisome. Mol. Cell 27, 527–538 (2007)

    Article  CAS  Google Scholar 

  2. Wang, X., Liu, X., Possoz, C. & Sherratt, D. J. The two Escherichia coli chromosome arms locate to separate cell halves. Genes Dev. 20, 1727–1731 (2006)

    Article  CAS  Google Scholar 

  3. Nielsen, H. J. et al. The Escherichia coli chromosome is organized with the left and right chromosome arms in separate cell halves. Mol. Microbiol. 62, 331–338 (2006)

    Article  CAS  Google Scholar 

  4. Thanbichler, M. & Shapiro, L. Getting organized—how bacterial cells move proteins and DNA. Nature Rev. Microbiol. 6, 28–40 (2008)

    Article  CAS  Google Scholar 

  5. Wang, X., Possoz, C. & Sherratt, D. J. Dancing around the divisome: asymmetric chromosome segregation in Escherichia coli . Genes Dev. 19, 2367–2377 (2005)

    Article  CAS  Google Scholar 

  6. Woldringh, C. L. & Nanninga, N. Structural and physical aspects of bacterial chromosome segregation. J. Struct. Biol. 156, 273–283 (2006)

    Article  CAS  Google Scholar 

  7. Rocha, E. P. et al. A strand-specific model for chromosome segregation in bacteria. Mol. Microbiol. 49, 895–903 (2003)

    Article  CAS  Google Scholar 

  8. Eykelenboom, J. K., Blackwood, J. K., Okely, E. & Leach, D. R. SbcCD causes a double-strand break at a DNA palindrome in the Escherichia coli chromosome. Mol. Cell 29, 644–651 (2008)

    Article  CAS  Google Scholar 

  9. Pinder, D. J., Blake, C. E., Lindsey, J. C. & Leach, D. R. Replication strand preference for deletions associated with DNA palindromes. Mol. Microbiol. 28, 719–727 (1998)

    Article  CAS  Google Scholar 

  10. Skarstad, K. & Boye, E. Degradation of individual chromosomes in recA mutants of Escherichia coli . J. Bacteriol. 175, 5505–5509 (1993)

    Article  CAS  Google Scholar 

  11. Mason, D. J. & Powelson, D. M. Nuclear division as observed in live bacteria by a new technique. J. Bacteriol. 71, 474–479 (1956)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Khlebnikov, A. et al. Homogeneous expression of the P(BAD) promoter in Escherichia coli by constitutive expression of the low-affinity high-capacity AraE transporter. Microbiology 147, 3241–3247 (2001)

    Article  CAS  Google Scholar 

  13. Darmon, E. et al. SbcCD regulation and localization in Escherichia coli . J. Bacteriol. 189, 6686–6694 (2007)

    Article  CAS  Google Scholar 

  14. Cairns, J. Mutation selection and the natural history of cancer. Nature 255, 197–200 (1975)

    Article  ADS  CAS  Google Scholar 

  15. Rando, T. A. The immortal strand hypothesis: segregation and reconstruction. Cell 129, 1239–1243 (2007)

    Article  CAS  Google Scholar 

  16. Kiel, M. J. et al. Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU. Nature 449, 238–242 (2007)

    Article  ADS  CAS  Google Scholar 

  17. Waghmare, S. K. et al. Quantitative proliferation dynamics and random chromosome segregation of hair follicle stem cells. EMBO J. 27, 1309–1320 (2008)

    Article  CAS  Google Scholar 

  18. Lansdorp, P. M. Immortal strands? Give me a break. Cell 129, 1244–1247 (2007)

    Article  CAS  Google Scholar 

  19. Lew, D. J., Burke, D. J. & Dutta, A. The immortal strand hypothesis: how could it work? Cell 133, 21–23 (2008)

    Article  CAS  Google Scholar 

  20. Niki, H., Yamaichi, Y. & Hiraga, S. Dynamic organization of chromosomal DNA in Escherichia coli . Genes Dev. 14, 212–223 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Yamaichi, Y. & Niki, H. migS, a cis-acting site that affects bipolar positioning of oriC on the Escherichia coli chromosome. EMBO J. 23, 221–233 (2004)

    Article  CAS  Google Scholar 

  22. Thanbichler, M. & Shapiro, L. Chromosome organization and segregation in bacteria. J. Struct. Biol. 156, 292–303 (2006)

    Article  CAS  Google Scholar 

  23. Danilova, O. et al. MukB colocalizes with the oriC region and is required for organization of the two Escherichia coli chromosome arms into separate cell halves. Mol. Microbiol. 65, 1485–1492 (2007)

    Article  CAS  Google Scholar 

  24. Gitai, Z. et al. MreB actin-mediated segregation of a specific region of a bacterial chromosome. Cell 120, 329–341 (2005)

    Article  CAS  Google Scholar 

  25. Kruse, T. et al. Actin homolog MreB and RNA polymerase interact and are both required for chromosome segregation in Escherichia coli . Genes Dev. 20, 113–124 (2006)

    Article  CAS  Google Scholar 

  26. Karczmarek, A. et al. DNA and origin region segregation are not affected by the transition from rod to sphere after inhibition of Escherichia coli MreB by A22. Mol. Microbiol. 65, 51–63 (2007)

    Article  CAS  Google Scholar 

  27. Lemon, K. P. & Grossman, A. D. Localization of bacterial DNA polymerase: evidence for a factory model of replication. Science 282, 1516–1519 (1998)

    Article  CAS  Google Scholar 

  28. Rossi, M. L., Purohit, V., Brandt, P. D. & Bambara, R. A. Lagging strand replication proteins in genome stability and DNA repair. Chem. Rev. 106, 453–473 (2006)

    Article  CAS  Google Scholar 

  29. Reyes-Lamothe, R., Possoz, C., Danilova, O. & Sherratt, D. J. Independent positioning and action of Escherichia coli replisomes in live cells. Cell 133, 90–102 (2008)

    Article  CAS  Google Scholar 

  30. Possoz, C., Filipe, S. R., Grainge, I. & Sherratt, D. J. Tracking of controlled Escherichia coli replication fork stalling and restart at repressor-bound DNA in vivo . EMBO J. 25, 2596–2604 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Sherratt for the gifts of plasmids pWX6, pLau43 and pLau44. We also thank E. Darmon and J. Blackwood for reading the manuscript. This work was supported by the Medical Research Council.

Author Contributions M.A.W. and D.R.F.L. conceived and designed the experiments; M.A.W. constructed all strains and plasmids apart from pDL1625, pDL1709 and pDL2542, which were constructed by J.K.E., E.W. and M.A.L.-V., respectively; M.A.W. performed the experiments; M.A.W. and D.R.F.L. analysed the data and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. F. Leach.

Supplementary information

Supplementary Information

This file contains Supplementary Figure 1 with Legend and Supplementary Tables 1-3 (PDF 135 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, M., Eykelenboom, J., Lopez-Vernaza, M. et al. Non-random segregation of sister chromosomes in Escherichia coli. Nature 455, 1248–1250 (2008). https://doi.org/10.1038/nature07282

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07282

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing