Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Trans-splicing in C. elegans generates the negative RNAi regulator ERI-6/7

Abstract

Mutations that enhance the response to double-stranded RNA (dsRNA) have revealed components of the RNA interference (RNAi) pathway or related small RNA pathways. To explore these small RNA pathways, we screened for Caenorhabditis elegans mutants displaying an enhanced response to exogenous dsRNAs. Here we describe the isolation of mutations in two adjacent, divergently transcribed open reading frames (eri-6 and eri-7) that fail to complement. eri-6 and eri-7 produce separate pre-messenger RNAs (pre-mRNAs) that are trans-spliced to form a functional mRNA, eri-6/7. Trans-splicing of eri-6/7 is mediated by a direct repeat that flanks the eri-6 gene. Adenosine to inosine editing within untranslated regions of eri-6 and eri-7 pre-mRNAs reveals a double-stranded pre-mRNA intermediate, forming in the nucleus before splicing occurs. The ERI-6/7 protein is a superfamily I helicase that both negatively regulates the exogenous RNAi pathway and functions in an endogenous RNAi pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The eri-6/7 locus in various strains and its gene products in C. elegans N2.
Figure 2: The eri-6/7 mRNA is formed by local trans -splicing.
Figure 3: Chimaeric ERI-6/7 protein is expressed through trans -splicing.
Figure 4: ERI-6/7 is required for endogenous RNAi.

Similar content being viewed by others

Accession codes

Primary accessions

GenBank/EMBL/DDBJ

Data deposits

The eri-6 cDNA sequences are deposited in GenBank under accession numbers FJ009006, FJ009007, FJ009008 and FJ009009.

References

  1. Mello, C. C. & Conte, D. Revealing the world of RNA interference. Nature 431, 338–342 (2004)

    Article  ADS  CAS  Google Scholar 

  2. Zamore, P. D. & Haley, B. Ribo-gnome: the big world of small RNAs. Science 309, 1519–1524 (2005)

    Article  ADS  CAS  Google Scholar 

  3. Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001)

    ADS  CAS  Google Scholar 

  4. Parker, J. S. & Barford, D. Argonaute: a scaffold for the function of short regulatory RNAs. Trends Biochem. Sci. 31, 622–630 (2006)

    Article  CAS  Google Scholar 

  5. Duchaine, T. F. et al. Functional proteomics reveals the biochemical niche of C. elegans DCR-1 in multiple small-RNA-mediated pathways. Cell 124, 343–354 (2006)

    Article  CAS  Google Scholar 

  6. Simmer, F. et al. Loss of the putative RNA-directed RNA polymerase RRF-3 makes C. elegans hypersensitive to RNAi. Curr. Biol. 12, 1317–1319 (2002)

    Article  CAS  Google Scholar 

  7. Kennedy, S., Wang, D. & Ruvkun, G. A conserved siRNA-degrading RNase negatively regulates RNA interference in C. elegans . Nature 427, 645–649 (2004)

    Article  ADS  CAS  Google Scholar 

  8. Lee, R. C., Hammell, C. M. & Ambros, V. Interacting endogenous and exogenous RNAi pathways in Caenorhabditis elegans . RNA 12, 589–597 (2006)

    Article  CAS  Google Scholar 

  9. Alder, M. N., Dames, S., Gaudet, J. & Mango, S. E. Gene silencing in Caenorhabditis elegans by transitive RNA interference. RNA 9, 25–32 (2003)

    Article  CAS  Google Scholar 

  10. Pak, J. & Fire, A. Distinct populations of primary and secondary effectors during RNAi in C. elegans . Science 315, 241–244 (2007)

    Article  ADS  CAS  Google Scholar 

  11. Sijen, T. et al. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107, 465–476 (2001)

    Article  CAS  Google Scholar 

  12. Kamath, R. S. et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237 (2003)

    Article  ADS  CAS  Google Scholar 

  13. Tavernarakis, N., Wang, S. L., Dorovkov, M., Ryazanov, A. & Driscoll, M. Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes. Nature Genet. 24, 180–183 (2000)

    Article  CAS  Google Scholar 

  14. Timmons, L., Court, D. L. & Fire, A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans . Gene 263, 103–112 (2001)

    Article  CAS  Google Scholar 

  15. McIntire, S. L., Reimer, R. J., Schuske, K., Edwards, R. H. & Jorgensen, E. M. Identification and characterization of the vesicular GABA transporter. Nature 389, 870–876 (1997)

    Article  ADS  CAS  Google Scholar 

  16. von Mende, N., Bird, D. M., Albert, P. S. & Riddle, D. L. dpy-13: a nematode collagen gene that affects body shape. Cell 55, 567–576 (1988)

    Article  CAS  Google Scholar 

  17. Costa, M. et al. A putative catenin–cadherin system mediates morphogenesis of the Caenorhabditis elegans embryo. J. Cell Biol. 141, 297–308 (1998)

    Article  CAS  Google Scholar 

  18. Beitel, G. J., Tuck, S., Greenwald, I. & Horvitz, H. R. The Caenorhabditis elegans gene lin-1 encodes an ETS-domain protein and defines a branch of the vulval induction pathway. Genes Dev. 9, 3149–3162 (1995)

    Article  CAS  Google Scholar 

  19. Tabara, H. et al. The rde-1 gene, RNA interference, and transposon silencing in C. elegans . Cell 99, 123–132 (1999)

    Article  CAS  Google Scholar 

  20. Fraser, A. G. et al. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408, 325–330 (2000)

    Article  ADS  CAS  Google Scholar 

  21. WormBase Release. WS170. 〈http://ws170.wormbase.org/〉 (2007)

  22. Wicks, S. R., Yeh, R. T., Gish, W. R., Waterston, R. H. & Plasterk, R. H. Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map. Nature Genet. 28, 160–164 (2001)

    Article  CAS  Google Scholar 

  23. Garcia-Muse, T. & Boulton, S. J. Meiotic recombination in Caenorhabditis elegans . Chromosome Res. 15, 607–621 (2007)

    Article  CAS  Google Scholar 

  24. Bass, B. L. RNA editing by adenosine deaminases that act on RNA. Annu. Rev. Biochem. 71, 817–846 (2002)

    Article  CAS  Google Scholar 

  25. Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature Biotechnol. 22, 1567–1572 (2004)

    Article  CAS  Google Scholar 

  26. Knight, S. W. & Bass, B. L. The role of RNA editing by ADARs in RNAi. Mol. Cell 10, 809–817 (2002)

    Article  CAS  Google Scholar 

  27. Wang, D. et al. Somatic misexpression of germline P granules and enhanced RNA interference in retinoblastoma pathway mutants. Nature 436, 593–597 (2005)

    Article  ADS  CAS  Google Scholar 

  28. Tabara, H., Yigit, E., Siomi, H. & Mello, C. C. The dsRNA binding protein RDE-4 interacts with RDE-1, DCR-1, and a DExH-box helicase to direct RNAi in C. elegans . Cell 109, 861–871 (2002)

    Article  CAS  Google Scholar 

  29. Ketting, R. F., Haverkamp, T. H., van Luenen, H. G. & Plasterk, R. H. Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 99, 133–141 (1999)

    Article  CAS  Google Scholar 

  30. Yigit, E. et al. Analysis of the C. elegans Argonaute family reveals that distinct Argonautes act sequentially during RNAi. Cell 127, 747–757 (2006)

    Article  CAS  Google Scholar 

  31. Meister, G. et al. Identification of novel argonaute-associated proteins. Curr. Biol. 15, 2149–2155 (2005)

    Article  CAS  Google Scholar 

  32. Dalmay, T., Horsefield, R., Braunstein, T. H. & Baulcombe, D. C. SDE3 encodes an RNA helicase required for post-transcriptional gene silencing in Arabidopsis . EMBO J. 20, 2069–2078 (2001)

    Article  CAS  Google Scholar 

  33. Tomari, Y. et al. RISC assembly defects in the Drosophila RNAi mutant armitage. Cell 116, 831–841 (2004)

    Article  CAS  Google Scholar 

  34. Labrador, M. et al. Protein encoding by both DNA strands. Nature 409, 1000 (2001)

    Article  ADS  CAS  Google Scholar 

  35. Dorn, R., Reuter, G. & Loewendorf, A. Transgene analysis proves mRNA trans-splicing at the complex mod(mdg4) locus in Drosophila . Proc. Natl Acad. Sci. USA 98, 9724–9729 (2001)

    Article  ADS  CAS  Google Scholar 

  36. Horiuchi, T., Giniger, E. & Aigaki, T. Alternative trans-splicing of constant and variable exons of a Drosophila axon guidance gene, lola . Genes Dev. 17, 2496–2501 (2003)

    Article  CAS  Google Scholar 

  37. Felix, M. A. Genomes: a helpful cousin for our favourite worm. Curr. Biol. 14, R75–R77 (2004)

    Article  CAS  Google Scholar 

  38. Obbard, D. J., Jiggins, F. M., Halligan, D. L. & Little, T. J. Natural selection drives extremely rapid evolution in antiviral RNAi genes. Curr. Biol. 16, 580–585 (2006)

    Article  CAS  Google Scholar 

  39. Wilkins, C. et al. RNA interference is an antiviral defence mechanism in Caenorhabditis elegans . Nature 436, 1044–1047 (2005)

    Article  ADS  CAS  Google Scholar 

  40. Schott, D. H., Cureton, D. K., Whelan, S. P. & Hunter, C. P. An antiviral role for the RNA interference machinery in Caenorhabditis elegans . Proc. Natl Acad. Sci. USA 102, 18420–18424 (2005)

    Article  ADS  CAS  Google Scholar 

  41. Stiernagle, T. in WormBook (ed. the C. elegans research community) 10.1895/wormbook.1.101. 1 〈http://www.wormbook.org〉 (2006)

    Google Scholar 

  42. Sempere, L. F., Dubrovsky, E. B., Dubrovskaya, V. A., Berger, E. M. & Ambros, V. The expression of the let-7 small regulatory RNA is controlled by ecdysone during metamorphosis in Drosophila melanogaster . Dev. Biol. 244, 170–179 (2002)

    Article  CAS  Google Scholar 

  43. Caplen, N. J. et al. Rescue of polyglutamine-mediated cytotoxicity by double-stranded RNA-mediated RNA interference. Hum. Mol. Genet. 11, 175–184 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank: S. Kennedy for advice and initiating the enhanced RNAi screen; M. Finney for advice on advanced PCR; C. Zhang for mg441 Eri characterization; Y. Kohara, D. Thierry-Mieg and J. Thierry-Mieg for EST sequences and clones; the Mitani laboratory for deletion strains; the Caenorhabditis Genetics Center for strains; Ruvkun laboratory members for reading the manuscript and many discussions; the laboratories of J. Kaplan and F. Ausubel for discussions; and the Leukemia and Lymphoma Society, and EMBO for funding to S.E.J.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Ruvkun.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1–12 and Legends, Supplementary Methods, Supplementary Tables 1–3, a Supplementary Discussion and Supplementary Notes (PDF 3058 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, S., Butler, M., Pan, Q. et al. Trans-splicing in C. elegans generates the negative RNAi regulator ERI-6/7. Nature 455, 491–496 (2008). https://doi.org/10.1038/nature07274

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07274

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing