Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Broadband observations of the naked-eye γ-ray burst GRB 080319B

Abstract

Long-duration γ-ray bursts (GRBs) release copious amounts of energy across the entire electromagnetic spectrum, and so provide a window into the process of black hole formation from the collapse of massive stars. Previous early optical observations of even the most exceptional GRBs (990123 and 030329) lacked both the temporal resolution to probe the optical flash in detail and the accuracy needed to trace the transition from the prompt emission within the outflow to external shocks caused by interaction with the progenitor environment. Here we report observations of the extraordinarily bright prompt optical and γ-ray emission of GRB 080319B that provide diagnostics within seconds of its formation, followed by broadband observations of the afterglow decay that continued for weeks. We show that the prompt emission stems from a single physical region, implying an extremely relativistic outflow that propagates within the narrow inner core of a two-component jet.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Light curve of prompt emission.
Figure 2: Composite light curve.
Figure 3: Spectral energy distribution of the prompt emission.
Figure 4: Schematic diagram of the two-component jet model.

Similar content being viewed by others

References

  1. Gehrels, N. et al. The Swift gamma-ray burst mission. Astrophys. J. 611, L1005–L1020 (2004)

    Article  Google Scholar 

  2. Rees, M. J. & Mészáros, P. Relativistic fireballs—energy conversion and time-scales. Mon. Not. R. Astron. Soc. 258, 41–43 (1992)

    Article  ADS  Google Scholar 

  3. Mészáros, P. & Rees, M. J. Optical and long-wavelength afterglow from gamma-ray bursts. Astrophys. J. 476, 232–237 (1997)

    Article  ADS  Google Scholar 

  4. Wijers, R. A. M. J., Rees, M. J. & Mészáros, P. Shocked by GRB 970228: the afterglow of a cosmological fireball. Mon. Not. R. Astron. Soc. 288, 51–56 (1997)

    Article  ADS  Google Scholar 

  5. Zhang, B. & Mészáros, P. Gamma-ray bursts: progress, problems and prospects. Int. J. Mod. Phys. A 19, 2385–2472 (2004)

    Article  CAS  ADS  Google Scholar 

  6. Sari, R., Piran, T. & Narayan, R. Spectra and light curves of gamma-ray burst afterglows. Astrophys. J. 497, L17–L20 (1998)

    Article  ADS  Google Scholar 

  7. Vreeswijk, P. M. et al. VLT/UVES redshift of GRB 080319B. GCN Circ. 7444, (2008)

  8. Castro-Tirado, A. J. et al. Decay of the GRB 990123 optical afterglow: implications for the fireball model. Science 283, 2069–2073 (1999)

    Article  CAS  ADS  Google Scholar 

  9. Akerlof, C. et al. Observation of contemporaneous optical radiation from a γ-ray burst. Nature 398, 400–402 (1999)

    Article  CAS  ADS  Google Scholar 

  10. Blake, C. H. et al. An infrared flash contemporaneous with the γ-rays of GRB 041219a. Nature 435, 181–184 (2005)

    Article  CAS  ADS  Google Scholar 

  11. Vestrand, W. T. et al. A link between prompt optical and prompt γ-ray emission in γ-ray bursts. Nature 435, 178–180 (2005)

    Article  CAS  ADS  Google Scholar 

  12. Barthelmy, S. D. et al. The Burst Alert Telescope (BAT) on the SWIFT Midex Mission. Space Sci. Rev. 120, 143–164 (2005)

    Article  ADS  Google Scholar 

  13. Racusin, J. L. et al. GRB 080319B: Swift detection of an intense burst with a bright optical counterpart. GCN Circ. 7427, (2008)

  14. Golenetskii, S. et al. Konus-Wind observation of GRB 080319B. GCN Circ. 7482, (2008)

  15. Aptekar, R. L. et al. Konus-W Gamma-Ray Burst Experiment for the GGS Wind Spacecraft. Space Sci. Rev. 71, 265–272 (1995)

    Article  ADS  Google Scholar 

  16. Cwiok, M. et al. Search for GRB related prompt optical emission and other fast varying objects with ‘Pi of the Sky’ detector. Astrophys. Space Sci. 309, 531–535 (2007)

    Article  ADS  Google Scholar 

  17. Molinari, E. et al. TORTOREM: Two-telescope complex for detection and investigation of optical transients. Nuovo Cimento B 121, 1525–1526 (2006)

    ADS  Google Scholar 

  18. Pagani, C. et al. Swift observation of GRB 080319A. GCN Rep. 121 1. (2008)

  19. Zerbi, F. M. et al. The REM telescope: detecting the near infra-red counterparts of gamma-ray bursts and the prompt behavior of their optical continuum. Astron. Nachr. 322, 275–285 (2001)

    Article  ADS  Google Scholar 

  20. Roming, P. W. A. et al. The Swift Ultra-Violet/Optical Telescope. Space Sci. Rev. 120, 95–142 (2005)

    Article  ADS  Google Scholar 

  21. Burrows, D. B. et al. The Swift X-Ray Telescope. Space Sci. Rev. 120, 164–195 (2005)

    Article  ADS  Google Scholar 

  22. Bloom, J. et al. Observations of the naked-eye GRB 080319B: implications of nature’s brightest explosion. Preprint at 〈http://arxiv.org/abs/0803.3215〉 (2008)

  23. Kumar, P. & Panaitescu, A. What did we learn from gamma-ray burst 080319B? Preprint at 〈http://arxiv.org/abs/0805.0144〉 (2008)

  24. Kobayashi, S. Light curves of gamma-ray burst optical flashes. Astrophys. J. 545, 807–812 (2000)

    Article  ADS  Google Scholar 

  25. Nakar, E. & Piran, T. Early afterglow emission from a reverse shock as a diagnostic tool for gamma-ray burst outflows. Mon. Not. R. Astron. Soc. 353, 647–653 (2004)

    Article  ADS  Google Scholar 

  26. Ramirez-Ruiz, E. & Fenimore, E. E. Pulse width evolution in gamma-ray bursts: evidence for internal shocks. Astrophys. J. 539, 712–717 (2000)

    Article  CAS  ADS  Google Scholar 

  27. Sari, R. & Piran, T. GRB 990123: The optical flash and the fireball model. Astrophys. J. 517, L109–L112 (1999)

    Article  ADS  Google Scholar 

  28. Mészáros, P. & Rees, M. J. GRB 990123: reverse and internal shock flashes and late afterglow behaviour. Mon. Not. R. Astron. Soc. 306, 39–43 (1999)

    Article  ADS  Google Scholar 

  29. Panaitescu, A. & Mészáros, P. Gamma-ray bursts from upscattered self-absorbed synchrotron emission. Astrophys. J. 544, L17–L21 (2000)

    Article  ADS  Google Scholar 

  30. Kumar, P. & McMahon, E. A general scheme for modelling γ-ray burst prompt emission. Mon. Not. R. Astron. Soc. 384, 33–63 (2008)

    Article  CAS  ADS  Google Scholar 

  31. Steinle, H. et al. Measurements of gamma-ray bursts with GLAST. Chinese J. Astron. Astrophys. 6 (Suppl. S1). 365–368 (2006)

    Article  Google Scholar 

  32. Pedersen, H. et al. Evidence for diverse optical emission from gamma-ray burst sources. Astrophys. J. 496, 311–315 (1998)

    Article  ADS  Google Scholar 

  33. Frail, D. et al. The enigmatic radio afterglow of GRB 991216. Astrophys. J. 538, L129–L132 (2000)

    Article  ADS  Google Scholar 

  34. Ramirez-Ruiz, E., Celotti, A. & Rees, M. J. Events in the life of a cocoon surrounding a light, collapsar jet. Mon. Not. R. Astron. Soc. 337, 1349–1356 (2002)

    Article  CAS  ADS  Google Scholar 

  35. Kumar, P. & Piran, T. Energetics and luminosity function of gamma-ray bursts. Astrophys. J. 535, 152–157 (2000)

    Article  CAS  ADS  Google Scholar 

  36. Peng, F., Königl, A. & Granot, J. Two component jet models of gamma-ray burst sources. Astrophys. J. 626, 966–977 (2005)

    Article  CAS  ADS  Google Scholar 

  37. Berger, E. et al. A common origin for cosmic explosions inferred from calorimetry of GRB030329. Nature 426, 154–157 (2003)

    Article  CAS  ADS  Google Scholar 

  38. Huang, Y. F. et al. Rebrightening of XRF 030723: further evidence for a two-component jet in a gamma-ray burst. Astrophys. J. 605, 300–306 (2004)

    Article  CAS  ADS  Google Scholar 

  39. Zhang, W., Woosley, S. E. & MacFadyen, A. I. Relativistic jets in collapsars. Astrophys. J. 586, 356–371 (2003)

    Article  ADS  Google Scholar 

  40. Kumar, P. & Panaitescu, A. Afterglow emission from naked gamma-ray bursts. Astrophys. J. 541, L51–L54 (2000)

    Article  ADS  Google Scholar 

  41. Zhang, B. & Kobayashi, S. Gamma-ray burst early afterglows: reverse shock emission from an arbitrarily magnetized ejecta. Astrophys. J. 628, 315–334 (2005)

    Article  CAS  ADS  Google Scholar 

  42. Zhang, B., Kobayashi, S. & Mészáros, P. Gamma-ray burst early optical afterglows: implications for the initial Lorentz factor and the central engine. Astrophys. J. 595, 950–954 (2003)

    Article  ADS  Google Scholar 

  43. Kumar, P. & Panaitescu, A. A unified treatment of the gamma-ray burst 021211 and its afterglow. Mon. Not. R. Astron. Soc. 346, 905–914 (2003)

    Article  CAS  ADS  Google Scholar 

  44. Chevalier, R. A. & Li, Z. Y. Wind interaction models for gamma-ray burst afterglows: the case for two types of progenitors. Astrophys. J. 536, 195–212 (2000)

    Article  ADS  Google Scholar 

  45. Sari, R., Piran, T. & Halpern, J. Jets in gamma-ray bursts. Astrophys. J. 519, L17–L20 (1999)

    Article  ADS  Google Scholar 

  46. Cordes, J. M. & Lazio, T. J. W. NE2001. I. A new model for the galactic distribution of free electrons and its fluctuations. Preprint at 〈http://arxiv.org/PS_cache/astro-ph/pdf/0207/0207156v3.pdf〉 (2002)

  47. Walker, M. A. Interstellar scintillation of compact extragalactic radio sources. Mon. Not. R. Astron. Soc. 294, 307–311 (1998)

    Article  ADS  Google Scholar 

  48. Frail, D. et al. Beaming in gamma-ray bursts: evidence for a standard energy reservoir. Astrophys. J. 562, L55–L58 (2001)

    Article  ADS  Google Scholar 

  49. Soderberg, A. et al. Radio detection of GRB 080319B. GCN Circ. 7506, (2008)

  50. Band, D. et al. BATSE observations of gamma-ray burst spectra. I. Spectral diversity. Astrophys. J. 413, 281–292 (1993)

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

We thank E. Rol for comments. This research was supported by NASA, the National Science Foundation (NSF), the Agenzia Spaziale Italiana, the Ministero dell’Università e della Ricerca (MUR), the Ministero degli Affari Esteri, the Netherlands Organization for Scientific Research (NWO), the National Science Foundation of China, the Russian Space Agency, Science and Technology and Facilities Council (STFC), the Slovenian Research Agency, the Ministry for Higher Education, Science, and Technology, Slovenia, and the Polish Ministry of Science and Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Racusin.

Supplementary information

Supplementary Information

This file contains Supplementary Methods describing technical descriptions of each telescope and corresponding data analysis, additional discussions and figures describing light curve and spectral energy distribution fitting, and detailed discussion of both afterglow models. It contains Supplementary References, Supplementary Acknowledgements, Supplementary Figures 1-15 and Supplementary Table 1. (PDF 3693 kb)

Supplementary Data

This file contains all light curve data presented in the paper as an ASCII text file. (TXT 835 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Racusin, J., Karpov, S., Sokolowski, M. et al. Broadband observations of the naked-eye γ-ray burst GRB 080319B. Nature 455, 183–188 (2008). https://doi.org/10.1038/nature07270

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07270

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing