Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Major viral impact on the functioning of benthic deep-sea ecosystems


Viruses are the most abundant biological organisms of the world’s oceans. Viral infections are a substantial source of mortality in a range of organisms—including autotrophic and heterotrophic plankton—but their impact on the deep ocean and benthic biosphere is completely unknown. Here we report that viral production in deep-sea benthic ecosystems worldwide is extremely high, and that viral infections are responsible for the abatement of 80% of prokaryotic heterotrophic production. Virus-induced prokaryotic mortality increases with increasing water depth, and beneath a depth of 1,000 m nearly all of the prokaryotic heterotrophic production is transformed into organic detritus. The viral shunt, releasing on a global scale 0.37–0.63 gigatonnes of carbon per year, is an essential source of labile organic detritus in the deep-sea ecosystems. This process sustains a high prokaryotic biomass and provides an important contribution to prokaryotic metabolism, allowing the system to cope with the severe organic resource limitation of deep-sea ecosystems. Our results indicate that viruses have an important role in global biogeochemical cycles, in deep-sea metabolism and the overall functioning of the largest ecosystem of our biosphere.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Bathymetric patterns of viruses and prokaryotes in deep-sea sediments worldwide.
Figure 2: Relationships between viruses and prokaryotes in deep-sea sediments worldwide.
Figure 3: Bathymetric patterns of virus-induced prokaryotic mortality.
Figure 4: Relationship between carbon released by viral lysis of prokaryotic biomass (viral shunt) and by prokaryotic turnover.


  1. 1

    Suttle, C. A. Viruses in the sea. Nature 437, 356–361 (2005)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Weinbauer, M. G. Ecology of prokaryotic viruses. FEMS Microbiol. Rev. 28, 127–181 (2004)

    CAS  Article  Google Scholar 

  3. 3

    Proctor, L. M. & Fuhrman, J. A. Viral mortality of marine bacteria and cyanobacteria. Nature 343, 60–62 (1990)

    ADS  Article  Google Scholar 

  4. 4

    Suttle, C. A., Chan, A. M. & Cottrell, M. T. Infection of phytoplankton by viruses and reduction of primary productivity. Nature 347, 467–469 (1990)

    ADS  Article  Google Scholar 

  5. 5

    Suttle, C. A. Marine viruses—major players in the global ecosystem. Nature Rev. Microbiol. 5, 801–812 (2007)

    CAS  Article  Google Scholar 

  6. 6

    Fuhrman, J. A. Marine viruses and their biogeochemical and ecological effects. Nature 399, 541–548 (1999)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Wommack, K. E. & Colwell, R. R. Virioplankton: viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 64, 69–114 (2000)

    CAS  Article  Google Scholar 

  8. 8

    Wilhelm, S. W. & Suttle, C. A. Viruses and nutrient cycles in the sea. Bioscience 49, 781–788 (1999)

    Article  Google Scholar 

  9. 9

    Gage, J. D. & Tyler, P. A. Deep-Sea Biology: A Natural History of Organisms at the Deep Sea Floor (Cambridge Univ. Press, 1991)

    Book  Google Scholar 

  10. 10

    Jahnke, R. A. The global ocean flux of particulate organic carbon: areal distribution and magnitude. Glob. Biogeochem. Cycles 10, 71–88 (1996)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Rex, M. A. et al. Global bathymetric patterns of standing stock and body size in the deep-sea benthos. Mar. Ecol. Prog. Ser. 317, 1–8 (2006)

    ADS  Article  Google Scholar 

  12. 12

    Yayanos, A. A. Microbiology to 10,500 meters in the deep sea. Annu. Rev. Microbiol. 49, 777–805 (1995)

    CAS  Article  Google Scholar 

  13. 13

    Whitman, W. B., Coleman, D. C. & Wiebe, W. J. Prokaryotes: The unseen majority. Proc. Natl Acad. Sci. USA 95, 6578–6583 (1998)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Dell’Anno, A. & Danovaro, R. Extracellular DNA plays a key role in deep-sea ecosystem functioning. Science 309, 2179 (2005)

    Article  Google Scholar 

  15. 15

    Witte, U. et al. In situ experimental evidence of the fate of a phytodetritus pulse at the abyssal sea floor. Nature 424, 763–766 (2003)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Danovaro, R. et al. Viriobenthos in freshwater and marine sediments: a review. Freshwat. Biol. 53, 1186–1213 (2008)

    Article  Google Scholar 

  17. 17

    Siem-Jørgensen, M., Glud, R. N. & Middelboe, M. Viral dynamics in a coastal sediment: seasonal pattern, controlling factors and relations to the pelagic-benthic coupling. Mar. Biol. Res. 4, 165–179 (2008)

    Article  Google Scholar 

  18. 18

    Mari, X., Kerros, M.-E. & Weinbauer, M. G. Virus attachment to transparent exopolymeric particles along trophic gradients in the Southwestern Lagoon of New Caledonia. Appl. Environ. Microbiol. 73, 5245–5252 (2007)

    CAS  Article  Google Scholar 

  19. 19

    Tamburini, C., Garcin, J., Ragot, M. & Bianchi, A. Biopolymer hydrolysis and bacterial production under ambient hydrostatic pressure through a 2000 m water column in the NW Mediterranean. Deep-Sea Res. II 49, 2109–2123 (2002)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Tamburini, C., Garcin, J. & Bianchi, A. Role of deep-sea bacteria in organic matter mineralization and adaptation to hydrostatic pressure conditions in the NW Mediterranean Sea. Aquat. Microb. Ecol. 32, 209–218 (2003)

    Article  Google Scholar 

  21. 21

    Bartlett, D. H. Pressure effects on in vivo microbial processes. Biochim. Biophys. Acta 1595, 367–381 (2002)

    CAS  Article  Google Scholar 

  22. 22

    Druffel, E. R. M. & Robinson, D. H. Is the deep sea on a diet? Science 284, 1139–1140 (1999)

    CAS  Article  Google Scholar 

  23. 23

    Deming, J. W. & Barross, J. A. in Organic Geochemistry: Principles and Applications (eds Engel, M. H. & Macko, S.A.) 119–144 (Plenum, 1993)

    Book  Google Scholar 

  24. 24

    Danovaro, R., Della Croce, N., Dell’Anno, A. & Pusceddu, A. A depocenter of organic matter at 7800-m depth in the SE Pacific Ocean. Deep-Sea Res. I 50, 1411–1420 (2003)

    CAS  Article  Google Scholar 

  25. 25

    Noble, R. T. & Fuhrman, J. A. Breakdown and microbial uptake of marine viruses and other lysis products. Aquat. Microb. Ecol. 20, 1–11 (1999)

    Article  Google Scholar 

  26. 26

    Corinaldesi, C., Dell’Anno, A. & Danovaro, R. Viral infection plays a key role in extracellular DNA dynamics in marine anoxic systems. Limnol. Oceanogr. 52, 508–516 (2007)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Mei, M. L. & Danovaro, R. Virus production and life strategies in aquatic sediments. Limnol. Oceanogr. 49, 459–470 (2004)

    ADS  Article  Google Scholar 

  28. 28

    Helton, R. R., Liu, L. & Wommack, K. E. Assessment of factors influencing direct enumeration of viruses within estuarine sediments. Appl. Environ. Microbiol. 72, 4767–4774 (2006)

    CAS  Article  Google Scholar 

  29. 29

    Danovaro, R., Dell’Anno, A., Trucco, A., Serresi, M. & Vanucci, S. Determination of virus abundance in marine sediments. Appl. Environ. Microbiol. 67, 1384–1387 (2001)

    CAS  Article  Google Scholar 

  30. 30

    Wen, K., Ortmann, A. C. & Suttle, C. A. Accurate estimation of viral abundance by epifluorescence microscopy. Appl. Environ. Microbiol. 70, 3862–3867 (2004)

    CAS  Article  Google Scholar 

  31. 31

    Wilhelm, S. W., Briden, S. & Suttle, C. A. A dilution technique for the direct measurement of viral production: a comparison in stratified and tidally mixed coastal waters. Microb. Ecol. 43, 168–173 (2002)

    CAS  Article  Google Scholar 

  32. 32

    Steward, G. F., Wikner, J., Smith, D. C., Cochlan, W. P. & Azam, F. Estimation of virus production in the sea: 1. Method development. Mar. Microb. Food Webs 6, 57–78 (1992)

    Google Scholar 

  33. 33

    Fuhrman, J. A. & Noble, R. T. Viruses and protists cause similar bacterial mortality in coastal seawater. Limnol. Oceanogr. 40, 1236–1242 (1995)

    ADS  Article  Google Scholar 

  34. 34

    Weinbauer, M. G., Brettar, I. & Höfle, M. G. Lysogeny and virus-induced mortality of bacterioplankton in surface, deep, and anoxic marine waters. Limnol. Oceanogr. 48, 1457–1465 (2003)

    ADS  Article  Google Scholar 

  35. 35

    Fry, J. C. in Methods in Aquatic Bacteriology (ed. Austin, B.) 27–72 (John Wiley & Sons, 1990)

    Google Scholar 

  36. 36

    Fuhrman, J. A. & Azam, F. Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: evaluation and field results. Mar. Biol. 66, 109–120 (1982)

    Article  Google Scholar 

  37. 37

    Weinbauer, M. G. & Höfle, M. G. Size-specific mortality of lake bacterioplankton by natural virus communities. Aquat. Microb. Ecol. 15, 103–113 (1998)

    Article  Google Scholar 

  38. 38

    Weinbauer, M. G., Fuks, D. & Peduzzi, P. Distribution of viruses and dissolved DNA along a coastal trophic gradient in the Northern Adriatic Sea. Appl. Environ. Microbiol. 59, 4074–4082 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Anderson, M. J. DISTLM v.5: a FORTRAN Computer Program to Calculate a Distance-Based Multivariate Analysis for a Linear Model (Department of Statistics, Univ. Auckland, 2004)

    Google Scholar 

Download references


This work was financially supported by the EU within the framework of the project HERMES. C.T. was supported by the ANR POTES.

Author Contributions R.D. performed the project planning; A.D., C.C., M.M. and C.T. performed the experimental work; R.D., A.D., C.C., M.M., R.N., C.T. and M.W. performed the data analysis; R.D., A.D., C.C., M.M., R.N., C.T. and M.W. wrote the manuscript.

Author information



Corresponding author

Correspondence to Roberto Danovaro.

Supplementary information

Supplementary Information

The file contains Supplementary Methods; Supplementary Tables 1-4; Supplementary Figures 1-7; Supplementary Notes. The Supplementary Figure 1 provides information on sampling sites where sediments for microbiological determinations were collected. Supplementary figures 2-7 provide additional information on viral production estimated by using different methodologies, on the effect of mitomycin C on viral production and on the effect of pressure on viral and prokaryotic C production. (PDF 655 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Danovaro, R., Dell’Anno, A., Corinaldesi, C. et al. Major viral impact on the functioning of benthic deep-sea ecosystems. Nature 454, 1084–1087 (2008).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing