Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre


The cores of most galaxies are thought to harbour supermassive black holes, which power galactic nuclei by converting the gravitational energy of accreting matter into radiation1. Sagittarius A* (Sgr A*), the compact source of radio, infrared and X-ray emission at the centre of the Milky Way, is the closest example of this phenomenon, with an estimated black hole mass that is 4,000,000 times that of the Sun2,3. A long-standing astronomical goal is to resolve structures in the innermost accretion flow surrounding Sgr A*, where strong gravitational fields will distort the appearance of radiation emitted near the black hole. Radio observations at wavelengths of 3.5 mm and 7 mm have detected intrinsic structure in Sgr A*, but the spatial resolution of observations at these wavelengths is limited by interstellar scattering4,5,6,7. Here we report observations at a wavelength of 1.3 mm that set a size of microarcseconds on the intrinsic diameter of Sgr A*. This is less than the expected apparent size of the event horizon of the presumed black hole, suggesting that the bulk of Sgr A* emission may not be centred on the black hole, but arises in the surrounding accretion flow.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Fitting the size of Sgr A* with 1.3 mm wavelength VLBI.
Figure 2: Observed and intrinsic size of Sgr A* as a function of wavelength.


  1. 1

    Kormendy, J. & Richstone, D. Inward bound: the search for supermassive black holes in galactic nuclei. Annu. Rev. Astron. Astrophys. 33, 581–624 (1995)

    ADS  Article  Google Scholar 

  2. 2

    Schödel, R. et al. A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way. Nature 419, 694–696 (2002)

    ADS  Article  Google Scholar 

  3. 3

    Ghez, A. et al. Stellar orbits around the Galactic Center black hole. Astrophys. J. 620, 744–757 (2005)

    ADS  Article  Google Scholar 

  4. 4

    Rogers, A. E. E. et al. Small-scale structure and position of Sagittarius A(*) from VLBI at 3 millimeter wavelength. Astrophys. J. 434, L59–L62 (1994)

    ADS  Article  Google Scholar 

  5. 5

    Doeleman, S. S. et al. Structure of Sagittarius A* at 86 GHz using VLBI closure quantities. Astron. J. 121, 2610–2617 (2001)

    ADS  Article  Google Scholar 

  6. 6

    Bower, G. C. et al. Detection of the intrinsic size of Sagittarius A* through closure amplitude imaging. Science 304, 704–708 (2004)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Shen, Z. Q., Lo, K. Y., Liang, M.-C., Ho, P. T. P. & Zhao, J.-H. A size of 1 au for the radio source Sgr A* at the centre of the Milky Way. Nature 438, 62–64 (2005)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Reid, M. J. The distance to the center of the Galaxy. Annu. Rev. Astron. Astrophys. 31, 345–372 (1993)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Marrone, D. et al. An X-ray, IR, and submillimeter flare of Sagittarius A*. Astrophys. J. 682, 373–383 (2008)

    ADS  Article  Google Scholar 

  10. 10

    Yusef-Zadeh, F. et al. A multiwavelength study of SgrA*: The role of near-IR flares in production of X-ray, soft γ-ray, and submillimeter emission. Astrophys. J. 644, 198–213 (2006)

    ADS  Article  Google Scholar 

  11. 11

    Eckart, A. et al. The flare activity of Sagittarius A*. New coordinated mm to X-ray observations. Astron. Astrophys. 450, 535–555 (2006)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Krichbaum, T. P. et al. VLBI observations of the Galactic Center source Sgr A* at 86 GHz and 215 GHz. Astron. Astrophys. 335, L106–L110 (1998)

    ADS  Google Scholar 

  13. 13

    Bower, G. C., Goss, W. M., Falcke, H., Backer, D. C. & Lithwick, Y. The intrinsic size of Sagittarius A* from 0.35 to 6 cm. Astrophys. J. 648, L127–L130 (2006)

    ADS  Article  Google Scholar 

  14. 14

    Backer, D. C. & Sramek, R. A. Proper motion of the compact, nonthermal radio source in the Galactic Center, Sagittarius A*. Astrophys. J. 524, 805–815 (1999)

    ADS  Article  Google Scholar 

  15. 15

    Reid, M. J. & Brunthaler, A. The proper motion of Sagittarius A*. II. The mass of Sagittarius A*. Astrophys. J. 616, 872–884 (2004)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Maoz, E. Dynamical constraints on alternatives to supermassive black holes in galactic nuclei. Astrophys. J. 494, L181–L184 (1998)

    ADS  Article  Google Scholar 

  17. 17

    Falcke, H., Melia, F. & Agol, E. Viewing the shadow of the black hole at the Galactic Center. Astrophys. J. 528, L13–L16 (2000)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Broderick, A. E. & Loeb, A. Imaging optically-thin hotspots near the black hole horizon of Sgr A* at radio and near-infrared wavelengths. Mon. Not. R. Astron. Soc. 367, 905–916 (2006)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Noble, S. C., Leung, P. K., Gammie, C. F. & Book, L. G. Simulating the emission and outflows from accretion discs. Class. Quant. Gravity 24, S259–S274 (2007)

    ADS  MathSciNet  Article  Google Scholar 

  20. 20

    Falcke, H. & Markoff, S. The jet model for Sgr A*: Radio and X-ray spectrum. Astron. Astrophys. 362, 113–118 (2000)

    ADS  Google Scholar 

  21. 21

    Broderick, A. E. & Narayan, R. On the nature of the compact dark mass at the galactic center. Astrophys. J. 638, L21–L24 (2006)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Frolov, V. P. & Novikov, I. D. Black Hole Physics: Basic Concepts and New Developments (Kluwer, 1998)

    Google Scholar 

  23. 23

    Rogers, A. E. E., Doeleman, S. S. & Moran, J. M. Fringe detection methods for very long baseline arrays. Astron. J. 109, 1391–1401 (1995)

    ADS  Article  Google Scholar 

Download references


High-frequency VLBI work at MIT Haystack Observatory is supported by grants from the National Science Foundation. The Submillimeter Array is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics. We thank G. Weaver for the loan of a frequency reference from Johns Hopkins University Applied Physics Labs; J. Davis for use of GPS equipment; I. Diegel, R. Vessot, D. Phillips and E. Mattison for assistance with hydrogen masers; the NASA Geodesy Program for loan of the CARMA Hydrogen Maser; D. Kubo, J. Test, P. Yamaguchi, G. Reiland, J. Hoge and M. Hodges for technical assistance; M. Gurwell for SMA calibration data; A. Kerr and A. Lichtenberger for contributions at ARO/SMT; A. Broderick, V. Fish, A. Loeb and I. Shapiro for discussions; and the staff at all participating facilities.

Author information



Corresponding author

Correspondence to Sheperd S. Doeleman.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Doeleman, S., Weintroub, J., Rogers, A. et al. Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre. Nature 455, 78–80 (2008). https://doi.org/10.1038/nature07245

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing