Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The increasing intensity of the strongest tropical cyclones


Atlantic tropical cyclones are getting stronger on average, with a 30-year trend that has been related to an increase in ocean temperatures over the Atlantic Ocean and elsewhere1,2,3,4. Over the rest of the tropics, however, possible trends in tropical cyclone intensity are less obvious, owing to the unreliability and incompleteness of the observational record and to a restricted focus, in previous trend analyses, on changes in average intensity. Here we overcome these two limitations by examining trends in the upper quantiles of per-cyclone maximum wind speeds (that is, the maximum intensities that cyclones achieve during their lifetimes), estimated from homogeneous data derived from an archive of satellite records. We find significant upward trends for wind speed quantiles above the 70th percentile, with trends as high as 0.3 ± 0.09 m s-1 yr-1 (s.e.) for the strongest cyclones. We note separate upward trends in the estimated lifetime-maximum wind speeds of the very strongest tropical cyclones (99th percentile) over each ocean basin, with the largest increase at this quantile occurring over the North Atlantic, although not all basins show statistically significant increases. Our results are qualitatively consistent with the hypothesis that as the seas warm, the ocean has more energy to convert to tropical cyclone wind.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis and model results of satellite-derived tropical cyclone lifetime-maximum wind speeds.
Figure 2: Trends in satellite-derived tropical cyclone lifetime-maximum wind speeds from quantile regression.
Figure 3: Quantile regression of tropical cyclone lifetime-maximum wind speed on globally averaged tropical storm basin SST.

Similar content being viewed by others


  1. Emanuel, K. A. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436, 686–688 (2005)

    Article  ADS  CAS  Google Scholar 

  2. Webster, P. J., Holland, G. J., Curry, J. A. & Chang, H. R. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309, 1844–1846 (2005)

    Article  ADS  CAS  Google Scholar 

  3. Trenberth, K. Uncertainty in hurricanes and global warming. Science 308, 1753–1754 (2005)

    Article  CAS  Google Scholar 

  4. Elsner, J. B. Granger causality and Atlantic hurricanes. Tellus 59A, 476–485 (2007)

    Article  ADS  Google Scholar 

  5. Emanuel, K. A. The theory of hurricanes. Annu. Rev. Fluid Mech. 23, 179–196 (1991)

    Article  ADS  Google Scholar 

  6. Holland, G. J. The maximum potential intensity of tropical cyclones. J. Atmos. Sci. 54, 2519–2541 (1997)

    Article  ADS  Google Scholar 

  7. Knutson, T. R. & Tuleya, R. E. Impact of CO2-induced warming on simulated hurricane intensity and precipitation: Sensitivity to the choice of climate model and convective parameterization. J. Clim. 17, 3477–3495 (2004)

    Article  ADS  Google Scholar 

  8. Bengtsson, L. et al. How may tropical cyclones change in a warmer climate. Tellus 59A, 539–561 (2007)

    Article  ADS  Google Scholar 

  9. Pielke, R. A., Landsea, C., Mayeld, M., Laver, J. & Pasch, R. Hurricanes and global warming. Bull. Am. Meteorol. Soc. 86, 1571–1575 (2005)

    Article  ADS  Google Scholar 

  10. Landsea, C. W. Hurricanes and global warming. Nature 438, E11–E13 (2005)

    Article  ADS  CAS  Google Scholar 

  11. Chan, J. C. L. Comment on “Changes in tropical cyclone number, duration, and intensity in a warming environment”. Science 311, 1713 (2006)

    Article  CAS  Google Scholar 

  12. Klotzbach, P. J. Trends in global tropical cyclone activity over the past twenty years (1986–2005). Geophys. Res. Lett. 33 10.1029/2006GL025881 (2006)

    Article  Google Scholar 

  13. Landsea, C. W., Harper, B. A., Hoarau, K. & Knaff, J. A. Can we detect trends in extreme tropical cyclones? Science 313, 452–454 (2006)

    Article  CAS  Google Scholar 

  14. Vecchi, G. A. & Soden, B. J. Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature 450, 1066–1070 (2007)

    Article  ADS  CAS  Google Scholar 

  15. Swanson, K. L. Nonlocality of Atlantic tropical cyclone intensities. Geochem. Geophys. Geosyst. 9 10.1029/2007GC001844 (2008)

    Article  Google Scholar 

  16. Kossin, J. P., Knapp, K. R., Vimont, D. J., Murnane, R. J. & Harper, B. A. A globally consistent reanalysis of hurricane variability and trends. Geophys. Res. Lett. 34 10.1029/2006GL028836 (2007)

  17. Shen, W., Tuleya, R. E. & Ginis, I. A sensitivity study of the thermodynamic environment on GFDL model hurricane intensity: Implications for global warming. J. Clim. 13, 109–121 (2000)

    Article  ADS  Google Scholar 

  18. Bister, M. & Emanuel, K. A. Low frequency variability of tropical cyclone potential intensity. 1. Interannual to interdecadal variability. J. Geophys. Res. 107 10.1029/2001JD000776 (2002)

  19. Rayner, N. A. et al. Global analysis of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108 10.1029/2002JD002670 (2003)

  20. Knapp, K. R. Calibration assessment of ISCCP geostationary infrared observations using HIRS. J. Atmos. Oceanic Technol. 25, 183–195 (2008)

    Article  ADS  Google Scholar 

  21. Knapp, K. R. & Kossin, J. P. A new global tropical cyclone data set from ISCCP B1 geostationary satellite observations. J. Appl. Remote Sensing 1, 013505 (2007)

    Article  Google Scholar 

  22. Knapp, K. R., Bates, J. J. & Barkstrom, B. Scientific data stewardship: Lessons learned from a satellite-data rescue effort. Bull. Am. Meteorol. Soc. 88, 1359–1361 (2007)

    Article  ADS  Google Scholar 

  23. Franklin, J. L., Black, M. L. & Valde, K. GPS dropwindsonde wind profiles in hurricanes and their operational implications. Weather Forecast. 18, 32–44 (2003)

    Article  ADS  Google Scholar 

  24. Gunshor, M. M., Schmit, T. J. & Menzel, W. P. Intercalibration of the infrared window and water vapor channels on operational geostationary environmental satellites using a single polar-orbiting satellite. J. Atmos. Oceanic Technol. 21, 61–68 (2004)

    Article  ADS  Google Scholar 

  25. Yu, K., Lu, Z. & Stander, J. Quantile regression: applications and current research areas. Statistician 52, 331–350 (2003)

    MathSciNet  Google Scholar 

Download references


The work was supported by the US National Science Foundation (ATM-0738172 and ATM-0614812) and by the Risk Prediction Initiative of the Bermuda Institute for Ocean Studies (RPI06-3-001).

Author information

Authors and Affiliations


Corresponding author

Correspondence to James B. Elsner.

Supplementary information

Supplementary Information

The file contains Supplementary Methods and Supplementary Figures 1-8 with Legends. (PDF 631 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elsner, J., Kossin, J. & Jagger, T. The increasing intensity of the strongest tropical cyclones. Nature 455, 92–95 (2008).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing