Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The structural basis for an essential subunit interaction in influenza virus RNA polymerase

Abstract

Influenza A virus is a major human and animal pathogen with the potential to cause catastrophic loss of life. The virus reproduces rapidly, mutates frequently and occasionally crosses species barriers. The recent emergence in Asia of avian influenza related to highly pathogenic forms of the human virus has highlighted the urgent need for new effective treatments1. Here we demonstrate the importance to viral replication of a subunit interface in the viral RNA polymerase, thereby providing a new set of potential drug binding sites entirely independent of surface antigen type. No current medication targets this heterotrimeric polymerase complex. All three subunits, PB1, PB2 and PA, are required for both transcription and replication2,3,4. PB1 carries the polymerase active site, PB2 includes the capped-RNA recognition domain, and PA is involved in assembly of the functional complex5,6,7, but so far very little structural information has been reported for any of them8,9,10,11. We describe the crystal structure of a large fragment of one subunit (PA) of influenza A RNA polymerase bound to a fragment of another subunit (PB1). The carboxy-terminal domain of PA forms a novel fold, and forms a deep, highly hydrophobic groove into which the amino-terminal residues of PB1 can fit by forming a 310 helix.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of the C-terminal domain of PA bound to the N-terminal peptide of PB1.
Figure 2: Hydrogen bonds between PA and PB1.
Figure 3: Hydrophobic contacts between PA and PB1.
Figure 4: Transcriptional activity of PA mutants.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Atomic coordinates and structure factors of the complex have been deposited in the Protein Data Bank under accession code 2ZNL.

References

  1. Peiris, J. S., de Jong, M. D. & Guan, Y. Avian influenza virus (H5N1): a threat to human health. Clin. Microbiol. Rev. 20, 243–267 (2007)

    Article  Google Scholar 

  2. Horisberger, M. A. The large P proteins of influenza A viruses are composed of one acidic and two basic polypeptides. Virology 107, 302–305 (1980)

    Article  CAS  Google Scholar 

  3. Braam, J., Ulmanen, I. & Krug, R. M. Molecular model of a eucaryotic transcription complex: functions and movements of influenza P proteins during capped RNA-primed transcription. Cell 34, 611–618 (1983)

    Article  Google Scholar 

  4. Nagata, K., Kawaguchi, A. & Naito, T. Host factors for replication and transcription of the influenza virus genome. Rev. Med. Virol. 18, 247–260 (2008)

    Article  CAS  Google Scholar 

  5. Fodor, E., Mingay, L. J., Crow, M., Deng, T. & Brownlee, G. G. A single amino acid mutation in the PA subunit of the influenza virus RNA polymerase promotes the generation of defective interfering RNAs. J. Virol. 77, 5017–5020 (2003)

    Article  CAS  Google Scholar 

  6. Kawaguchi, A., Naito, T. & Nagata, K. Involvement of influenza virus PA subunit in assembly of functional RNA polymerase complexes. J. Virol. 79, 732–744 (2005)

    Article  CAS  Google Scholar 

  7. Deng, T., Sharps, J. L. & Brownlee, G. G. Role of the influenza virus heterotrimeric RNA polymerase complex in the initiation of replication. J. Gen. Virol. 87, 3373–3377 (2006)

    Article  CAS  Google Scholar 

  8. Area, E. et al. 3D structure of the influenza virus polymerase complex: localization of subunit domains. Proc. Natl Acad. Sci. USA 101, 308–313 (2004)

    Article  ADS  CAS  Google Scholar 

  9. Torreira, E. et al. Three-dimensional model for the isolated recombinant influenza virus polymerase heterotrimer. Nucleic Acids Res. 35, 3774–3783 (2007)

    Article  CAS  Google Scholar 

  10. Tarendeau, F. et al. Structure and nuclear import function of the C-terminal domain of influenza virus polymerase PB2 subunit. Nature Struct. Mol. Biol. 14, 229–233 (2007)

    Article  CAS  Google Scholar 

  11. Guilligay, D. et al. The structural basis for cap binding by influenza virus polymerase subunit PB2. Nature Struct. Mol. Biol. 15, 500–506 (2008)

    Article  CAS  Google Scholar 

  12. Elton, D., Digard, P., Tiley, L. & Ortin, J. in Current Topics in Influenza Virology (ed. Kawaoka, Y.) 1–92 (Horizon Scientific Press, 2005)

    Google Scholar 

  13. Plotch, S. J., Bouloy, M., Ulmanen, I. & Krug, R. M. A unique cap(m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell 23, 847–858 (1981)

    Article  CAS  Google Scholar 

  14. Taubenberger, J. K. et al. Characterization of the 1918 influenza virus polymerase genes. Nature 437, 889–893 (2005)

    Article  ADS  CAS  Google Scholar 

  15. Zurcher, T., de la Luna, S., Sanz-Ezquerro, J. J., Nieto, A. & Ortin, J. Mutational analysis of the influenza virus A/Victoria/3/75 PA protein: studies of interaction with PB1 protein and identification of a dominant negative mutant. J. Gen. Virol. 77, 1745–1749 (1996)

    Article  CAS  Google Scholar 

  16. Perez, D. R. & Donis, R. O. Functional analysis of PA binding by influenza A virus PB1: effects on polymerase activity and viral infectivity. J. Virol. 75, 8127–8136 (2001)

    Article  CAS  Google Scholar 

  17. Ohtsu, Y., Honda, Y., Sakata, Y., Kato, H. & Toyoda, T. Fine mapping of the subunit binding sites of influenza virus RNA polymerase. Microbiol. Immunol. 46, 167–175 (2002)

    Article  CAS  Google Scholar 

  18. Ghanem, A. et al. Peptide-mediated interference with influenza A virus polymerase. J. Virol. 81, 7801–7804 (2007)

    Article  CAS  Google Scholar 

  19. Hara, K., Schmidt, F. I., Crow, M. & Brownlee, G. G. Amino acid residues in the N-terminal region of the PA subunit of influenza A virus RNA polymerase play a critical role in protein stability, endonuclease activity, cap binding, and virion RNA promoter binding. J. Virol. 80, 7789–7798 (2006)

    Article  CAS  Google Scholar 

  20. Fodor, E. et al. A single amino acid mutation in the PA subunit of the influenza virus RNA polymerase inhibits endonucleolytic cleavage of capped RNAs. J. Virol. 76, 8989–9001 (2002)

    Article  CAS  Google Scholar 

  21. Huarte, M. et al. Threonine 157 of influenza virus PA polymerase subunit modulates RNA replication in infectious viruses. J. Virol. 77, 6007–6013 (2003)

    Article  CAS  Google Scholar 

  22. Regan, J. F., Liang, Y. & Parslow, T. G. Defective assembly of influenza A virus due to a mutation in the polymerase subunit PA. J. Virol. 80, 252–261 (2006)

    Article  CAS  Google Scholar 

  23. Hsieh, H. P. & Hsu, J. T. Strategies of development of antiviral agents directed against influenza virus replication. Curr. Pharm. Des. 13, 3531–3542 (2007)

    Article  CAS  Google Scholar 

  24. World Health Organization A revision of the system of nomenclature for influenza viruses: a WHO memorandum. Bull. World Health Organ. 58, 585–591 (1980)

    Google Scholar 

  25. Kim, C. U. et al. Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: Design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity. J. Am. Chem. Soc. 119, 681–690 (1997)

    Article  CAS  Google Scholar 

  26. von Itzstein, M. et al. Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 363, 418–423 (1993)

    Article  ADS  CAS  Google Scholar 

  27. Russell, R. J. et al. The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature 443, 45–49 (2006)

    Article  ADS  CAS  Google Scholar 

  28. Liu, Y., Zhang, J. & Xu, W. Recent progress in rational drug design of neuraminidase inhibitors. Curr. Med. Chem. 14, 2872–2891 (2007)

    Article  CAS  Google Scholar 

  29. Wang, C., Takeuchi, K., Pinto, L. H. & Lamb, R. A. Ion channel activity of influenza A virus M2 protein: characterization of the amantadine block. J. Virol. 67, 5585–5594 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Stouffer, A. L. et al. Structural basis for the function and inhibition of an influenza virus proton channel. Nature 451, 596–599 (2008)

    Article  ADS  CAS  Google Scholar 

  31. Kawaguchi, A. & Nagata, K. De novo replication of the influenza virus RNA genome is regulated by DNA replicative helicase, MCM. EMBO J. 26, 4566–4575 (2007)

    Article  CAS  Google Scholar 

  32. Turan, K. et al. Nuclear MxA proteins form a complex with influenza virus NP and inhibit the transcription of the engineered influenza virus genome. Nucleic Acids Res. 32, 643–652 (2004)

    Article  CAS  Google Scholar 

  33. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  Google Scholar 

  34. Collaborative Computational Project, 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

    Article  Google Scholar 

  35. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008)

    Article  ADS  CAS  Google Scholar 

  36. Terwilliger, T. C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D 55, 849–861 (1999)

    Article  CAS  Google Scholar 

  37. Terwilliger, T. C. SOLVE and RESOLVE: Automated structure solution and density modification. Methods Enzymol. 374, 22–37 (2003)

    Article  CAS  Google Scholar 

  38. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  Google Scholar 

  39. Roussel, A. & Cambillau, C. in Silicon Graphics Geometry Partner Directory 77–78 (Silicon Graphics, 1989)

    Google Scholar 

  40. Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  CAS  Google Scholar 

  41. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997)

    Article  CAS  Google Scholar 

  42. Laskowski, R. A., Moss, D. S. & Thornton, J. M. Main-chain bond lengths and bond angles in protein structures. J. Mol. Biol. 231, 1049–1067 (1993)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff at the SPring-8 BL41XU and Photon Factory BL5A beamlines for assistance with data collection, and M. Yao and Y. Zhou for help with data processing. This work was supported in part by the ISS applied research partnership program (S.-Y.P.).

Author Contributions E.O., J.R.H.T., K.N. and S.-Y.P. conceived and designed the project. E.O. carried out complex purification and crystallization, and pull-down assays. E.O., H.Y., F.K., N.S. and S.-Y.P. conducted experimental work including cloning, expression, purification, binding assays, data collection and structure analysis. A.K. and K.N. tested the transcriptional activity of mutants. E.O., J.R.H.T. and S.-Y.P. wrote the manuscript, and all authors discussed the results and conclusions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam-Yong Park.

Supplementary information

Supplementary Information 1

The file contains Supplementary Methods and additional references, Supplementary Figures 1-2 with Legends and Supplementary Table 1. (PDF 2809 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obayashi, E., Yoshida, H., Kawai, F. et al. The structural basis for an essential subunit interaction in influenza virus RNA polymerase. Nature 454, 1127–1131 (2008). https://doi.org/10.1038/nature07225

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07225

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing