Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Regulatory networks define phenotypic classes of human stem cell lines


Stem cells are defined as self-renewing cell populations that can differentiate into multiple distinct cell types. However, hundreds of different human cell lines from embryonic, fetal and adult sources have been called stem cells, even though they range from pluripotent cells—typified by embryonic stem cells, which are capable of virtually unlimited proliferation and differentiation—to adult stem cell lines, which can generate a far more limited repertoire of differentiated cell types. The rapid increase in reports of new sources of stem cells and their anticipated value to regenerative medicine1,2 has highlighted the need for a general, reproducible method for classification of these cells3. We report here the creation and analysis of a database of global gene expression profiles (which we call the ‘stem cell matrix’) that enables the classification of cultured human stem cells in the context of a wide variety of pluripotent, multipotent and differentiated cell types. Using an unsupervised clustering method4,5 to categorize a collection of 150 cell samples, we discovered that pluripotent stem cell lines group together, whereas other cell types, including brain-derived neural stem cell lines, are very diverse. Using further bioinformatic analysis6 we uncovered a protein–protein network (PluriNet) that is shared by the pluripotent cells (embryonic stem cells, embryonal carcinomas and induced pluripotent cells). Analysis of published data showed that the PluriNet seems to be a common characteristic of pluripotent cells, including mouse embryonic stem and induced pluripotent cells and human oocytes. Our results offer a new strategy for classifying stem cells and support the idea that pluripotency and self-renewal are under tight control by specific molecular networks.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Sample collection and analysis for the stem cell matrix.
Figure 2: Clusters of samples based on machine learning algorithm.
Figure 3: Pluripotent stem-cell-specific protein–protein interaction network detected by MATISSE.

Accession codes

Primary accessions

Gene Expression Omnibus

Data deposits

The microarray data have been deposited at NCBI GEO (accession number GSE11508) and can also be accessed, processed and downloaded at


  1. Müller, F. J., Snyder, E. Y. & Loring, J. F. Gene therapy: can neural stem cells deliver? Nature Rev. Neurosci. 7, 75–84 (2006)

    Article  Google Scholar 

  2. Murry, C. E. & Keller, G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132, 661–680 (2008)

    CAS  Article  Google Scholar 

  3. Adewumi, O. et al. Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nature Biotechnol. 25, 803–816 (2007)

    CAS  Article  Google Scholar 

  4. Brunet, J. P., Tamayo, P., Golub, T. R. & Mesirov, J. P. Metagenes and molecular pattern discovery using matrix factorization. Proc. Natl Acad. Sci. USA 101, 4164–4169 (2004)

    ADS  CAS  Article  Google Scholar 

  5. Gao, Y. & Church, G. Improving molecular cancer class discovery through sparse non-negative matrix factorization. Bioinformatics 21, 3970–3975 (2005)

    CAS  Article  Google Scholar 

  6. Ulitsky, I. & Shamir, R. Identification of functional modules using network topology and high-throughput data. BMC Syst. Biol. 1, 8 (2007)

    Article  Google Scholar 

  7. Carpenter, M. K., Rosler, E. & Rao, M. S. Characterization and differentiation of human embryonic stem cells. Cloning Stem Cells 5, 79–88 (2003)

    CAS  Article  Google Scholar 

  8. Goldman, B. Magic marker myths. Nature Reports Stem Cells 10.1038/stemcells.2008.26 (2008)

  9. Monti, S., Tamayo, P., Mesirov, J. & Golub, T. Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data. Mach. Learn. 52, 91–118 (2003)

    Article  Google Scholar 

  10. Palmer, T. D. et al. Cell culture. Progenitor cells from human brain after death. Nature 411, 42–43 (2001)

    ADS  CAS  Article  Google Scholar 

  11. Schwartz, P. H. et al. Isolation and characterization of neural progenitor cells from post-mortem human cortex. J. Neurosci. Res. 74, 838–851 (2003)

    CAS  Article  Google Scholar 

  12. Kornblum, H. I. & Geschwind, D. H. Molecular markers in CNS stem cell research: hitting a moving target. Nature Rev. Neurosci. 2, 843–846 (2001)

    CAS  Article  Google Scholar 

  13. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006)

    CAS  Article  Google Scholar 

  14. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007)

    CAS  Article  Google Scholar 

  15. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007)

    ADS  CAS  Article  Google Scholar 

  16. Park, I. H. et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141–146 (2008)

    ADS  CAS  Article  Google Scholar 

  17. Okita, K., Ichisaka, T. & Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature 448, 313–317 (2007)

    ADS  CAS  Article  Google Scholar 

  18. Zeng, X. et al. BG01V: a variant human embryonic stem cell line which exhibits rapid growth after passaging and reliable dopaminergic differentiation. Restor. Neurol. Neurosci. 22, 421–428 (2004)

    CAS  PubMed  Google Scholar 

  19. Cowan, C. A. et al. Derivation of embryonic stem-cell lines from human blastocysts. N. Engl. J. Med. 350, 1353–1356 (2004)

    CAS  Article  Google Scholar 

  20. Efron, B. & Tibshirani, R. On testing the significance of sets of genes. Ann. Appl. Stat. 1, 107–129 (2007)

    MathSciNet  Article  Google Scholar 

  21. Wang, J. et al. A protein interaction network for pluripotency of embryonic stem cells. Nature 444, 364–368 (2006)

    ADS  CAS  Article  Google Scholar 

  22. Wang, Q. T. et al. A genome-wide study of gene activity reveals developmental signaling pathways in the preimplantation mouse embryo. Dev. Cell 6, 133–144 (2004)

    CAS  Article  Google Scholar 

  23. Chambers, I. et al. Nanog safeguards pluripotency and mediates germline development. Nature 450, 1230–1234 (2007)

    ADS  CAS  Article  Google Scholar 

  24. Tesar, P. J. et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448, 196–199 (2007)

    ADS  CAS  Article  Google Scholar 

  25. Golub, T. R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)

    CAS  Article  Google Scholar 

  26. Donoho, D. & Stodden, V. When does non-negative matrix factorization give correct decomposition into parts? Proc. NIPS (2003) 〈

  27. Lacayo, N. J. et al. Gene expression profiles at diagnosis in de novo childhood AML patients identify FLT3 mutations with good clinical outcomes. Blood 104, 2646–2654 (2004)

    CAS  Article  Google Scholar 

  28. Ewing, R. M. et al. Large-scale mapping of human protein-protein interactions by mass spectrometry. Mol. Syst. Biol. 3, 89 (2007)

    Article  Google Scholar 

  29. Mishra, G. R. et al. Human protein reference database–2006 update. Nucleic Acids Res. 34, D411–D414 (2006)

    CAS  Article  Google Scholar 

  30. Imitola, J. et al. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1α/CXC chemokine receptor 4 pathway. Proc. Natl Acad. Sci. USA 101, 18117–18122 (2004)

    ADS  CAS  Article  Google Scholar 

  31. Barnes, M., Freudenberg, J., Thompson, S., Aronow, B. & Pavlidis, P. Experimental comparison and cross-validation of the Affymetrix and Illumina gene expression analysis platforms. Nucleic Acids Res. 33, 5914–5923 (2005)

    CAS  Article  Google Scholar 

  32. Ploner, A., Miller, L. D., Hall, P., Bergh, J. & Pawitan, Y. Correlation test to assess low-level processing of high-density oligonucleotide microarray data. BMC Bioinformatics 6, 80 (2005)

    Article  Google Scholar 

  33. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005)

    ADS  CAS  Article  Google Scholar 

  34. Efron, B. & Tibshirani, R. On testing the significance of sets of genes. Ann. Appl. Stat. 1, 107–129 (2007)

    MathSciNet  Article  Google Scholar 

  35. R Development Core Team, R. A language and environment for statistical computing, help files. 〈〉 (2007)

  36. Troyanskaya, O., Garber, M., Brown, P., Botstein, D. & Altman, R. Nonparametric methods for identifying differentially expressed genes in microarray data. Bioinformatics 18, 1454–1461 (2002)

    CAS  Article  Google Scholar 

  37. Ideker, T., Ozier, O., Schwikowski, B. & Siegel, A. F. Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18 (suppl. 1). S233–S240 (2002)

    Article  Google Scholar 

  38. Cline, M. S. et al. Integration of biological networks and gene expression data using Cytoscape. Nature Protocols 2, 2366–2382 (2007)

    ADS  CAS  Article  Google Scholar 

  39. Barsky, A., Gardy, J. L., Hancock, R. E. & Munzner, T. Cerebral: a Cytoscape plugin for layout of and interaction with biological networks using subcellular localization annotation. Bioinformatics 23, 1040–1042 (2007)

    CAS  Article  Google Scholar 

  40. Boyer, L. A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005)

    CAS  Article  Google Scholar 

  41. Caraux, G. & Pinloche, S. PermutMatrix: a graphical environment to arrange gene expression profiles in optimal linear order. Bioinformatics 21, 1280–1281 (2005)

    CAS  Article  Google Scholar 

  42. Kocabas, A. et al. The transcriptome of human oocytes. Proc. Natl Acad. Sci. USA 103, 14027–14032 (2006)

    ADS  CAS  Article  Google Scholar 

Download references


We thank C. Stubban, H. Dittmer, S. Zapf and H. Meissner for their work with various cell cultures. We are grateful to D. Wakeman, R. Gonzalez, S. McKercher, J. P. Lee, H.-S. Park and S. Y. Moon for sharing their cell preparations for the type collection. We are also grateful to R. Wesselschmidt and M. Pera for their unique GCT lines and G. Daley for providing human iPSCs. A. M. Kocabas and J. Cibelli shared their human oocyte expression data with us. A. Barsky let us use the Cerebral 2.0 plug-in before its publication. M. Rosentraeger helped to compile the cell culture metadata. We thank J. Aldenhoff, D. Hinze-Selch, M. Westphal, K. Lamszus, U. Kehler, D. Barker and A. Fritz for their support and discussions of this project. This study has been supported by the following grants and awards: Christian-Abrechts University Young Investigator Award (F.-J.M.), SFB-654/C5 Sleep and Plasticity (F.-J.M. and D. Hinze-Selch), Hamburger Krebsgesellschaft Grant (N.O.S.), Edmond J. Safra Bioinformatics program fellowship at Tel-Aviv University (I.U.), Converging Technologies Program of The Israel Science Foundation Grant No 1767.07 (R.S.), Raymond and Beverly Sackler Chair in Bioinformatics (R.S.), Reproductive Scientist Development Program Scholar Award K12 5K12HD000849-20 (L.C.L.), California Institute for Regenerative Medicine Clinical Scholar Award (L.C.L.), NIH P20 GM075059-01 (J.F.L.), the Alzheimer’s Association (J.F.L.), and anonymous donations in support of stem cell research.

Author Contributions J.F.L. and F.-J.M. designed the study and wrote the manuscript; I.U., R.W., D.K., R.S., L.C.L. and F.-J.M. designed and conducted the bioinformatics analysis; L.C.L., C.L., P.H.S., M.S.R., I.-H.P., F.-J.M. and N.O.S. conducted experiments and provided essential materials for this study.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Franz-Josef Müller or Jeanne F. Loring.

Supplementary information

Supplementary Information 1

This files contains Supplementary Method 1 (In vitro Culture of Adult Neural Progenitors (HANSE)) and Supplementary Method 1 References. (PDF 107 kb)

Supplementary Information 2

This files contains Supplementary Method 2 (Consensus Clustering of Stem Cell Transcriptional Profiles), Supplementary Method 2 Figure 1 and Supplementary Method 2 References. (PDF 157 kb)

Supplementary Information 3

This files contains Supplementary Discussion 1 (Rationale for Clustering Algorithm Selection), Supplementary Discussion 1 Figures 1-10 and Supplementary Discussion 1 References. (PDF 1109 kb)

Supplementary Information 4

This files contains Supplementary Discussion 2 (PluriNet and Cell Cycle Regulation), Supplementary Discussion Figures 1-4, Supplementary Discussion Tables 1-4 and Supplementary Discussion References. (PDF 669 kb)

Supplementary Information 5

This files contains Supplementary Tables 1-13 (+References to Supplementary Tables) (PDF 386 kb)

Supplementary Information 6

This files contains Supplementary Figures 1-13 (+References to Supplementary Figures) (PDF 4386 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Müller, FJ., Laurent, L., Kostka, D. et al. Regulatory networks define phenotypic classes of human stem cell lines. Nature 455, 401–405 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing