The role of exercise and PGC1α in inflammation and chronic disease

Abstract

Inadequate physical activity is linked to many chronic diseases. But the mechanisms that tie muscle activity to health are unclear. The transcriptional coactivator PGC1α has recently been shown to regulate several exercise-associated aspects of muscle function. We propose that this protein controls muscle plasticity, suppresses a broad inflammatory response and mediates the beneficial effects of exercise.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Inflammation and chronic diseases.
Figure 2: Effect of PGC1α on chronic systemic inflammation.
Figure 3: Inactivity and obesity as risk factors for developing chronic diseases.

References

  1. 1

    Booth, F. W., Chakravarthy, M. V., Gordon, S. E. & Spangenburg, E. E. Waging war on physical inactivity: using modern molecular ammunition against an ancient enemy. J. Appl. Physiol. 93, 3–30 (2002).

    PubMed  Article  Google Scholar 

  2. 2

    Erikssen, G. et al. Changes in physical fitness and changes in mortality. Lancet 352, 759–762 (1998).

    PubMed  Article  CAS  Google Scholar 

  3. 3

    Hu, F. B. et al. Adiposity as compared with physical activity in predicting mortality among women. N. Engl. J. Med. 351, 2694–2703 (2004).

    PubMed  Article  CAS  Google Scholar 

  4. 4

    Kokkinos, P. et al. Exercise capacity and mortality in black and white men. Circulation 117, 614–622 (2008).

    PubMed  Article  Google Scholar 

  5. 5

    Booth, F. W. & Lees, S. J. Fundamental questions about genes, inactivity, and chronic diseases. Physiol. Genomics 28, 146–157 (2007).

    PubMed  Article  CAS  Google Scholar 

  6. 6

    McCracken, M., Jiles, R. & Blanck, H. M. Health behaviors of the young adult U.S. population: behavioral risk factor surveillance system, 2003. Prev. Chronic Dis. 4, A25 (2007).

    PubMed  PubMed Central  Google Scholar 

  7. 7

    Hollmann, W., Struder, H. K., Tagarakis, C. V. & King, G. Physical activity and the elderly. Eur. J. Cardiovasc. Prev. Rehabil. 14, 730–739 (2007).

    PubMed  Article  Google Scholar 

  8. 8

    Yates, L. B. et al. Exceptional longevity in men: modifiable factors associated with survival and function to age 90 years. Arch. Intern. Med. 168, 284–290 (2008).

    PubMed  Article  Google Scholar 

  9. 9

    Knowler, W. C. et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 346, 393–403 (2002).

    PubMed  Article  CAS  Google Scholar 

  10. 10

    Hotamisligil, G. S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  11. 11

    Haffner, S. M. The metabolic syndrome: inflammation, diabetes mellitus, and cardiovascular disease. Am. J. Cardiol. 97, 3A–11A (2006).

    PubMed  Article  CAS  Google Scholar 

  12. 12

    Matter, C. M. & Handschin, C. RANTES (regulated on activation, normal T cell expressed and secreted), inflammation, obesity, and the metabolic syndrome. Circulation 115, 946–948 (2007).

    PubMed  Article  Google Scholar 

  13. 13

    Lin, W. W. & Karin, M. A cytokine-mediated link between innate immunity, inflammation, and cancer. J. Clin. Invest. 117, 1175–1183 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  14. 14

    Zhou, J. R., Blackburn, G. L. & Walker, W. A. Symposium introduction: metabolic syndrome and the onset of cancer. Am. J. Clin. Nutr. 86, S817–S819 (2007).

    PubMed  PubMed Central  Article  Google Scholar 

  15. 15

    Tansey, M. G. et al. Neuroinflammation in Parkinson's disease: is there sufficient evidence for mechanism-based interventional therapy? Front. Biosci. 13, 709–717 (2008).

    PubMed  Article  CAS  Google Scholar 

  16. 16

    Whitton, P. S. Inflammation as a causative factor in the aetiology of Parkinson's disease. Br. J. Pharmacol. 150, 963–976 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  17. 17

    Zipp, F. & Aktas, O. The brain as a target of inflammation: common pathways link inflammatory and neurodegenerative diseases. Trends Neurosci. 29, 518–527 (2006).

    PubMed  Article  CAS  Google Scholar 

  18. 18

    Cotman, C. W., Berchtold, N. C. & Christie, L. A. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 30, 464–472 (2007).

    PubMed  Article  CAS  Google Scholar 

  19. 19

    Perry, V. H., Cunningham, C. & Holmes, C. Systemic infections and inflammation affect chronic neurodegeneration. Nature Rev. Immunol. 7, 161–167 (2007).

    Article  CAS  Google Scholar 

  20. 20

    Febbraio, M. A. Exercise and inflammation. J. Appl. Physiol. 103, 376–377 (2007).

    PubMed  Article  CAS  Google Scholar 

  21. 21

    Gleeson, M. Immune function in sport and exercise. J. Appl. Physiol. 103, 693–699 (2007).

    PubMed  Article  CAS  Google Scholar 

  22. 22

    Nieman, D. C. Current perspective on exercise immunology. Curr. Sports Med. Rep. 2, 239–242 (2003).

    PubMed  Article  Google Scholar 

  23. 23

    Gleeson, M., McFarlin, B. & Flynn, M. Exercise and Toll-like receptors. Exerc. Immunol. Rev. 12, 34–53 (2006).

    PubMed  Google Scholar 

  24. 24

    Gleeson, M., Nieman, D. C. & Pedersen, B. K. Exercise, nutrition and immune function. J. Sports Sci. 22, 115–125 (2004).

    PubMed  Article  Google Scholar 

  25. 25

    Pedersen, B. K., Akerstrom, T. C., Nielsen, A. R. & Fischer, C. P. Role of myokines in exercise and metabolism. J. Appl. Physiol. 103, 1093–1098 (2007).

    PubMed  Article  CAS  Google Scholar 

  26. 26

    Kristiansen, O. P. & Mandrup-Poulsen, T. Interleukin-6 and diabetes: the good, the bad, or the indifferent? Diabetes 54, S114–S124 (2005).

    PubMed  Article  CAS  Google Scholar 

  27. 27

    Sarkar, D. & Fisher, P. B. Molecular mechanisms of aging-associated inflammation. Cancer Lett. 236, 13–23 (2006).

    PubMed  Article  CAS  Google Scholar 

  28. 28

    Bremmer, M. A. et al. Inflammatory markers in late-life depression: Results from a population-based study. J. Affect. Disord. 106, 249–255 (2008).

    PubMed  Article  CAS  Google Scholar 

  29. 29

    Roubenoff, R. Physical activity, inflammation, and muscle loss. Nutr. Rev. 65, S208–S212 (2007).

    PubMed  Article  Google Scholar 

  30. 30

    Haddad, F., Zaldivar, F., Cooper, D. M. & Adams, G. R. IL-6-induced skeletal muscle atrophy. J. Appl. Physiol. 98, 911–917 (2005).

    PubMed  Article  CAS  Google Scholar 

  31. 31

    Coletti, D. et al. Tumor necrosis factor-α gene transfer induces cachexia and inhibits muscle regeneration. Genesis 43, 120–128 (2005).

    PubMed  Article  CAS  Google Scholar 

  32. 32

    Manson, J. E. et al. A prospective study of walking as compared with vigorous exercise in the prevention of coronary heart disease in women. N. Engl. J. Med. 341, 650–658 (1999).

    PubMed  Article  CAS  Google Scholar 

  33. 33

    Thomas, D. R. Loss of skeletal muscle mass in aging: examining the relationship of starvation, sarcopenia and cachexia. Clin. Nutr. 26, 389–399 (2007).

    PubMed  Article  Google Scholar 

  34. 34

    Sigal, R. J. et al. Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes: a randomized trial. Ann. Intern. Med. 147, 357–369 (2007).

    PubMed  Article  Google Scholar 

  35. 35

    Larson, E. B. et al. Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. Ann. Intern. Med. 144, 73–81 (2006).

    PubMed  Article  Google Scholar 

  36. 36

    Pette, D. Historical perspectives: plasticity of mammalian skeletal muscle. J. Appl. Physiol. 90, 1119–1124 (2001).

    PubMed  Article  CAS  Google Scholar 

  37. 37

    Flück, M. & Hoppeler, H. Molecular basis of skeletal muscle plasticity — from gene to form and function. Rev. Physiol. Biochem. Pharmacol. 146, 159–216 (2003).

    PubMed  Article  CAS  Google Scholar 

  38. 38

    Glass, D. J. Skeletal muscle hypertrophy and atrophy signaling pathways. Int. J. Biochem. Cell Biol. 37, 1974–1984 (2005).

    PubMed  Article  CAS  Google Scholar 

  39. 39

    Chin, E. R. et al. A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev. 12, 2499–2509 (1998).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  40. 40

    Berchtold, M. W., Brinkmeier, H. & Muntener, M. Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol. Rev. 80, 1215–1265 (2000).

    PubMed  Article  CAS  Google Scholar 

  41. 41

    Puigserver, P. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829–839 (1998).

    PubMed  Article  CAS  Google Scholar 

  42. 42

    Pilegaard, H., Saltin, B. & Neufer, P. D. Exercise induces transient transcriptional activation of the PGC-1α gene in human skeletal muscle. J. Physiol. 546, 851–858 (2003).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  43. 43

    Hood, D. A., Irrcher, I., Ljubicic, V. & Joseph, A. M. Coordination of metabolic plasticity in skeletal muscle. J. Exp. Biol. 209, 2265–2275 (2006).

    PubMed  Article  CAS  Google Scholar 

  44. 44

    Jager, S., Handschin, C., St-Pierre, J. & Spiegelman, B. M. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc. Natl Acad. Sci. USA 104, 12017–12022 (2007).

    ADS  PubMed  Article  CAS  Google Scholar 

  45. 45

    Russell, A. P. et al. Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-γ coactivator-1 and peroxisome proliferator-activated receptor-α in skeletal muscle. Diabetes 52, 2874–2881 (2003).

    PubMed  Article  CAS  Google Scholar 

  46. 46

    Lin, J. et al. Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature 418, 797–801 (2002).

    ADS  PubMed  Article  CAS  Google Scholar 

  47. 47

    Calvo, J. A. et al. Muscle-specific expression of PPARγ coactivator-1α improves exercise performance and increases peak oxygen uptake. J. Appl. Physiol. 104, 1304–1312 (2008).

    PubMed  Article  CAS  Google Scholar 

  48. 48

    Wende, A. R. et al. A role for the transcriptional coactivator PGC-1α in muscle refueling. J. Biol. Chem. 282, 36642–36651 (2007).

    PubMed  Article  CAS  Google Scholar 

  49. 49

    Handschin, C. et al. Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1α muscle-specific knock-out animals. J. Biol. Chem. 282, 30014–30021 (2007).

    PubMed  Article  CAS  Google Scholar 

  50. 50

    Handschin, C. & Spiegelman, B. M. Peroxisome proliferator-activated receptor γ coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr. Rev. 27, 728–735 (2006).

    PubMed  Article  CAS  Google Scholar 

  51. 51

    Lin, J., Handschin, C. & Spiegelman, B. M. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 1, 361–370 (2005).

    PubMed  Article  CAS  Google Scholar 

  52. 52

    Hanai, J. I. et al. The muscle-specific ubiquitin ligase atrogin-1/MAFbx mediates statin-induced muscle toxicity. J. Clin. Invest. 117, 3940–3951 (2007).

    PubMed  PubMed Central  CAS  Google Scholar 

  53. 53

    Handschin, C. et al. PGC-1α regulates the neuromuscular junction program and ameliorates Duchenne muscular dystrophy. Genes Dev. 21, 770–783 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  54. 54

    Sandri, M. et al. PGC-1α protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proc. Natl Acad. Sci. USA 103, 16260–16265 (2006).

    ADS  PubMed  Article  CAS  Google Scholar 

  55. 55

    Wu, Z. et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115–124 (1999).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  56. 56

    Mootha, V. K. et al. Errα and Gabpa/b specify PGC-1α-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proc. Natl Acad. Sci. USA 101, 6570–6575 (2004).

    ADS  PubMed  Article  CAS  Google Scholar 

  57. 57

    Handschin, C. et al. Abnormal glucose homeostasis in skeletal muscle-specific PGC-1α knockout mice reveals skeletal muscle-pancreatic β cell crosstalk. J. Clin. Invest. 117, 3463–3474 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  58. 58

    Mootha, V. K. et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nature Genet. 34, 267–273 (2003).

    ADS  PubMed  Article  CAS  Google Scholar 

  59. 59

    Patti, M. E. et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc. Natl Acad. Sci. USA 100, 8466–8471 (2003).

    ADS  PubMed  Article  CAS  Google Scholar 

  60. 60

    Alexandraki, K. et al. Inflammatory process in type 2 diabetes: The role of cytokines. Ann. NY Acad. Sci. 1084, 89–117 (2006).

    ADS  PubMed  Article  CAS  Google Scholar 

  61. 61

    St-Pierre, J. et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127, 397–408 (2006).

    PubMed  Article  CAS  Google Scholar 

  62. 62

    Valle, I. et al. PGC-1α regulates the mitochondrial antioxidant defense system in vascular endothelial cells. Cardiovasc. Res. 66, 562–573 (2005).

    PubMed  Article  CAS  Google Scholar 

  63. 63

    Moylan, J. S. & Reid, M. B. Oxidative stress, chronic disease, and muscle wasting. Muscle Nerve 35, 411–429 (2007).

    PubMed  Article  CAS  Google Scholar 

  64. 64

    Ji, L. L. Modulation of skeletal muscle antioxidant defense by exercise: Role of redox signaling. Free Radic. Biol. Med. 44, 142–152 (2008).

    PubMed  Article  CAS  Google Scholar 

  65. 65

    Brown, W. J., Burton, N. W. & Rowan, P. J. Updating the evidence on physical activity and health in women. Am. J. Prev. Med. 33, 404–411 (2007).

    PubMed  Article  Google Scholar 

  66. 66

    Perusse, L. & Bouchard, C. Genotype-environment interaction in human obesity. Nutr. Rev. 57, S31–38 (1999).

    PubMed  Article  CAS  Google Scholar 

  67. 67

    Rippe, J. M. & Hess, S. The role of physical activity in the prevention and management of obesity. J. Am. Diet. Assoc. 98, S31–38 (1998).

    PubMed  Article  CAS  Google Scholar 

  68. 68

    Hotamisligil, G. S. & Spiegelman, B. M. Tumor necrosis factor α: a key component of the obesity-diabetes link. Diabetes 43, 1271–1278 (1994).

    PubMed  Article  CAS  Google Scholar 

  69. 69

    Hotamisligil, G. S., Shargill, N. S. & Spiegelman, B. M. Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance. Science 259, 87–91 (1993).

    ADS  PubMed  Article  CAS  Google Scholar 

  70. 70

    Hamilton, M. T., Hamilton, D. G. & Zderic, T. W. Role of low energy expenditure and sitting in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease. Diabetes 56, 2655–2667 (2007).

    PubMed  Article  CAS  Google Scholar 

  71. 71

    Fraser, G. E. & Shavlik, D. J. Ten years of life: Is it a matter of choice? Arch. Intern. Med. 161, 1645–1652 (2001).

    PubMed  Article  CAS  Google Scholar 

  72. 72

    Arany, Z. et al. The transcriptional coactivator PGC-1β drives the formation of oxidative type IIX fibers in skeletal muscle. Cell Metab. 5, 35–46 (2007).

    PubMed  Article  CAS  Google Scholar 

  73. 73

    Wagner, B. K. et al. Large-scale chemical dissection of mitochondrial function. Nature Biotechnol. 26, 343–351 (2008).

    Article  CAS  Google Scholar 

  74. 74

    Arany, Z. et al. Gene expression-based screening identifies microtubule inhibitors as inducers of PGC-1α and oxidative phosphorylation. Proc. Natl Acad. Sci. USA 105, 4721–4726 (2008).

    ADS  PubMed  Article  Google Scholar 

  75. 75

    Handschin, C. & Mootha, V. K. Estrogen-related receptor α (ERRα): a novel target in type 2 diabetes. Drug Discov. Today Ther. Strateg. 2, 151–156 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Smith for assistance with graphics. We also thank our colleagues and the members of our laboratories for comments on the manuscript, in particular S. Loffredo, J. Estall, Z. Arany, G. Hansson, S. Summermatter, M. Toigo and U. A. Meyer. C.H. is supported by the University Research Priority Program 'Integrative Human Physiology' of the University of Zurich, an SNSF-Professorship of the Swiss National Science Foundation and the Muscular Dystrophy Association. B.M.S. is supported by several grants from the National Institutes of Health.

Author information

Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints.

Correspondence should be addressed to the authors (christoph.handschin@access.uzh.ch; bruce_spiegelman@dfci.harvard.edu).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Handschin, C., Spiegelman, B. The role of exercise and PGC1α in inflammation and chronic disease. Nature 454, 463–469 (2008). https://doi.org/10.1038/nature07206

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.