Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cancer-related inflammation

Abstract

The mediators and cellular effectors of inflammation are important constituents of the local environment of tumours. In some types of cancer, inflammatory conditions are present before a malignant change occurs. Conversely, in other types of cancer, an oncogenic change induces an inflammatory microenvironment that promotes the development of tumours. Regardless of its origin, 'smouldering' inflammation in the tumour microenvironment has many tumour-promoting effects. It aids in the proliferation and survival of malignant cells, promotes angiogenesis and metastasis, subverts adaptive immune responses, and alters responses to hormones and chemotherapeutic agents. The molecular pathways of this cancer-related inflammation are now being unravelled, resulting in the identification of new target molecules that could lead to improved diagnosis and treatment.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Pathways that connect inflammation and cancer.
Figure 2: Oncogenes and cancer-related inflammation.
Figure 3: Hormones and inflammation.
Figure 4: Inflammation and the malignant progression of epithelial tumours.

References

  1. Balkwill, F. & Mantovani, A. Inflammation and cancer: back to Virchow? Lancet 357, 539–545 (2001). This paper revisits Virchow's legacy and highlights the connections between inflammation and cancer.

    CAS  PubMed  Google Scholar 

  2. Balkwill, F., Charles, K. A. & Mantovani, A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7, 211–217 (2005).

    CAS  PubMed  Google Scholar 

  3. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Karin, M. Nuclear factor-κB in cancer development and progression. Nature 441, 431–436 (2006).

    ADS  CAS  PubMed  Google Scholar 

  5. Koehne, C. H. & Dubois, R. N. COX-2 inhibition and colorectal cancer. Semin. Oncol. 31, 12–21 (2004).

    CAS  PubMed  Google Scholar 

  6. Flossmann, E. & Rothwell, P. M. Effect of aspirin on long-term risk of colorectal cancer: consistent evidence from randomised and observational studies. Lancet 369, 1603–1613 (2007).

    CAS  PubMed  Google Scholar 

  7. Chan, A. T., Ogino, S. & Fuchs, C. S. Aspirin and the risk of colorectal cancer in relation to the expression of COX-2. N. Engl. J. Med. 356, 2131–2142 (2007).

    CAS  PubMed  Google Scholar 

  8. Borrello, M. G. et al. Induction of a proinflammatory program in normal human thyrocytes by the RET/PTC1 oncogene. Proc. Natl Acad. Sci. USA 102, 14825–14830 (2005). This is the first report that a frequent genetic event that causes cancer in humans (rearrangement of the chromosome on which RET is located, in human papillary thyroid carcinoma) activates an inflammatory transcriptional program in normal cells that is associated with metastatic behaviour.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. De Falco, V. et al. Biological role and potential therapeutic targeting of the chemokine receptor CXCR4 in undifferentiated thyroid cancer. Cancer Res. 67, 11821–11829 (2007).

    CAS  PubMed  Google Scholar 

  10. Xu, K. & Shu, H. K. EGFR activation results in enhanced cyclooxygenase-2 expression through p38 mitogen-activated protein kinase-dependent activation of the Sp1/Sp3 transcription factors in human gliomas. Cancer Res. 67, 6121–6129 (2007).

    CAS  PubMed  Google Scholar 

  11. Guerra, C. et al. Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 11, 291–302 (2007).

    CAS  PubMed  Google Scholar 

  12. Sparmann, A. & Bar-Sagi, D. Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell 6, 447–458 (2004).

    CAS  PubMed  Google Scholar 

  13. Sumimoto, H., Imabayashi, F., Iwata, T. & Kawakami, Y. The BRAF–MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J. Exp. Med. 203, 1651–1656 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Shchors, K. et al. The Myc-dependent angiogenic switch in tumors is mediated by interleukin 1β. Genes Dev. 20, 2527–2538 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Soucek, L. et al. Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors. Nature Med. 13, 1211–1218 (2007).

    CAS  PubMed  Google Scholar 

  16. Balkwill, F. Cancer and the chemokine network. Nature Rev. Cancer 4, 540–550 (2004).

    CAS  Google Scholar 

  17. Kobielak, A. & Fuchs, E. Links between α-catenin, NF-κB, and squamous cell carcinoma in skin. Proc. Natl Acad. Sci. USA 103, 2322–2327 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Phillips, R. J. et al. Epidermal growth factor and hypoxia-induced expression of CXC chemokine receptor 4 on non-small cell lung cancer cells is regulated by the phosphatidylinositol 3-kinase/PTEN/AKT/mammalian target of rapamycin signaling pathway and activation of hypoxia inducible factor-1α. J. Biol. Chem. 280, 22473–22481 (2005).

    CAS  PubMed  Google Scholar 

  19. Schioppa, T. et al. Regulation of the chemokine receptor CXCR4 by hypoxia. J. Exp. Med. 198, 1391–1402 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Staller, P. et al. Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature 425, 307–311 (2003).

    ADS  CAS  PubMed  Google Scholar 

  21. Bierie, B. & Moses, H. L. TGF-β and cancer. Cytokine Growth Factor Rev. 17, 29–40 (2006).

    CAS  PubMed  Google Scholar 

  22. Yu, H., Kortylewski, M. & Pardoll, D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nature Rev. Immunol. 7, 41–51 (2007).

    CAS  Google Scholar 

  23. Voronov, E. et al. IL-1 is required for tumor invasiveness and angiogenesis. Proc. Natl Acad. Sci. USA 100, 2645–2650 (2003).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Grivennikov, S. & Karin, M. Autocrine IL-6 signaling: a key event in tumorigenesis? Cancer Cell 13, 7–9 (2008).

    CAS  PubMed  Google Scholar 

  25. Szlosarek, P. W. & Balkwill, F. R. Tumour necrosis factor α: a potential target for the therapy of solid tumours. Lancet Oncol. 4, 565–573 (2003).

    CAS  PubMed  Google Scholar 

  26. Langowski, J. L. et al. IL-23 promotes tumour incidence and growth. Nature 442, 461–465 (2006).

    ADS  CAS  PubMed  Google Scholar 

  27. Courtois, G. & Gilmore, T. D. Mutations in the NF-κB signaling pathway: implications for human disease. Oncogene 25, 6831–6843 (2006).

    CAS  PubMed  Google Scholar 

  28. Carbia-Nagashima, A. et al. RSUME, a small RWD-containing protein, enhances SUMO conjugation and stabilizes HIF-1α during hypoxia. Cell 131, 309–323 (2007).

    CAS  PubMed  Google Scholar 

  29. Mizukami, Y. et al. Induction of interleukin-8 preserves the angiogenic response in HIF-1α-deficient colon cancer cells. Nature Med. 11, 992–997 (2005).

    CAS  PubMed  Google Scholar 

  30. Rius, J. et al. NF-κB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α. Nature 453, 807–811 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Greten, F. R. et al. IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118, 285–296 (2004).

    CAS  PubMed  Google Scholar 

  32. Pikarsky, E. et al. NF-κB functions as a tumour promoter in inflammation-associated cancer. Nature 431, 461–466 (2004). References 31 and 32 provide evidence that NF-κB is an endogenous promoter of colon and liver carcinogenesis. Reference 31 also shows that NF-κB activation in myeloid cells is required for colitis-associated cancer.

    ADS  CAS  PubMed  Google Scholar 

  33. Maeda, S., Kamata, H., Luo, J. L., Leffert, H. & Karin, M. IKKβ couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121, 977–990 (2005).

    CAS  PubMed  Google Scholar 

  34. Garlanda, C. et al. Increased susceptibility to colitis-associated cancer of mice lacking TIR8, an inhibitory member of the interleukin-1 receptor family. Cancer Res. 67, 6017–6021 (2007).

    CAS  PubMed  Google Scholar 

  35. Xiao, H. et al. The Toll–interleukin-1 receptor member SIGIRR regulates colonic epithelial homeostasis, inflammation, and tumorigenesis. Immunity 26, 461–475 (2007).

    CAS  PubMed  Google Scholar 

  36. Biswas, S. K. et al. A distinct and unique transcriptional program expressed by tumor-associated macrophages: defective NF-κB and enhanced IRF-3/STAT1 activation. Blood 107, 2112–2122 (2006).

    CAS  PubMed  Google Scholar 

  37. Saccani, A. et al. p50 nuclear factor-κB overexpression in tumor-associated macrophages inhibits M1 inflammatory responses and antitumor resistance. Cancer Res. 66, 11432–11440 (2006).

    CAS  PubMed  Google Scholar 

  38. Bromberg, J. F. et al. Stat3 as an oncogene. Cell 98, 295–303 (1999).

    CAS  PubMed  Google Scholar 

  39. Wang, T. et al. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nature Med. 10, 48–54 (2004).

    PubMed  Google Scholar 

  40. Kortylewski, M. et al. Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nature Med. 11, 1314–1321 (2005).

    CAS  PubMed  Google Scholar 

  41. Mantovani, A., Bottazzi, B., Colotta, F., Sozzani, S. & Ruco, L. The origin and function of tumor-associated macrophages. Immunol. Today 13, 265–270 (1992).

    CAS  PubMed  Google Scholar 

  42. Coussens, L. M., Tinkle, C. L., Hanahan, D. & Werb, Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103, 481–490 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bunt, S. K. et al. Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res. 67, 10019–10026 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lin, E. Y., Nguyen, A. V., Russell, R. G. & Pollard, J. W. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J. Exp. Med. 193, 727–740 (2001). This paper describes the first genetic evidence that TAMs promote cancer, in a study of a primary breast carcinoma model.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. De Palma, M. et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8, 211–226 (2005).

    CAS  PubMed  Google Scholar 

  46. Sica, A. & Bronte, V. Altered macrophage differentiation and immune dysfunction in tumor development. J. Clin. Invest. 117, 1155–1166 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Mantovani, A., Sozzani, S., Locati, M., Allavena, P. & Sica, A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23, 549–555 (2002).

    CAS  PubMed  Google Scholar 

  48. Hagemann, T. et al. Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. J. Immunol. 176, 5023–5032 (2006).

    CAS  PubMed  Google Scholar 

  49. Fischer, C. et al. Anti-PlGF inhibits growth of VEGFR-inhibitor-resistant tumors without affecting healthy vessels. Cell 131, 463–475 (2007).

    CAS  PubMed  Google Scholar 

  50. Kaplan, R. N. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820–827 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shojaei, F. et al. Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature 450, 825–831 (2007).

    ADS  CAS  PubMed  Google Scholar 

  52. Coussens, L. M. et al. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev. 13, 1382–1397 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lewis, C. E., De Palma, M. & Naldini, L. Tie2-expressing monocytes and tumor angiogenesis: regulation by hypoxia and angiopoietin 2. Cancer Res. 67, 8429–8432 (2007).

    CAS  PubMed  Google Scholar 

  54. Sozzani, S., Rusnati, M., Riboldi, E., Mitola, S. & Presta, M. Dendritic cell-endothelial cell cross-talk in angiogenesis. Trends Immunol. 28, 385–392 (2007).

    CAS  PubMed  Google Scholar 

  55. Noonan, D. M., De Lerma Barbaro, A., Vannini, N., Mortara, L. & Albini, A. Inflammation, inflammatory cells and angiogenesis: decisions and indecisions. Cancer Metastasis Rev. 27, 31–40 (2008).

    PubMed  Google Scholar 

  56. Dunn, G. P., Old, L. J. & Schreiber, R. D. The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21, 137–148 (2004).

    CAS  PubMed  Google Scholar 

  57. Swann, J. B. et al. Demonstration of inflammation-induced cancer and cancer immunoediting during primary tumorigenesis. Proc. Natl Acad. Sci. USA 105, 652–656 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. de Visser, K. E., Korets, L. V. & Coussens, L. M. De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 7, 411–423 (2005). This paper shows that in a model of human-papilloma-virus-driven carcinogenesis, adaptive immune responses mediated by B cells coordinate cancer-promoting inflammation.

    CAS  PubMed  Google Scholar 

  59. Beatson, G. On the treatment of inoperable cases of carcinoma of the mamma: suggestions for a new method of treatment with illustrative cases. Lancet 2, 104–162, (1896).

    Google Scholar 

  60. Zhu, P. et al. Macrophage/cancer cell interactions mediate hormone resistance by a nuclear receptor derepression pathway. Cell 124, 615–629 (2006).

    CAS  PubMed  Google Scholar 

  61. Naugler, W. E. et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 317, 121–124 (2007). References 60 and 61 show that two classic pathways of cancer promotion, hormones and inflammation, are linked in both liver cancer and prostate cancer.

    ADS  CAS  PubMed  Google Scholar 

  62. Muller, A. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56 (2001).

    ADS  CAS  PubMed  Google Scholar 

  63. Burger, J. A. & Kipps, T. J. CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood 107, 1761–1767 (2006).

    CAS  PubMed  Google Scholar 

  64. Kaifi, J. T. et al. Tumor-cell homing to lymph nodes and bone marrow and CXCR4 expression in esophageal cancer. J. Natl Cancer Inst. 97, 1840–1847 (2005).

    CAS  PubMed  Google Scholar 

  65. Salvucci, O. et al. The role of CXCR4 receptor expression in breast cancer: a large tissue microarray study. Breast Cancer Res. Treat. 97, 275–283 (2006).

    CAS  PubMed  Google Scholar 

  66. Kim, J. et al. Chemokine receptor CXCR4 expression in colorectal cancer patients increases the risk for recurrence and for poor survival. J. Clin. Oncol. 23, 2744–2753 (2005).

    CAS  PubMed  Google Scholar 

  67. Shields, J. D. et al. Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling. Cancer Cell 11, 526–538 (2007).

    CAS  PubMed  Google Scholar 

  68. Kawada, K. et al. Pivotal role of CXCR3 in melanoma cell metastasis to lymph nodes. Cancer Res. 64, 4010–4017 (2004).

    CAS  PubMed  Google Scholar 

  69. Shulby, S. A., Dolloff, N. G., Stearns, M. E., Meucci, O. & Fatatis, A. CX3CR1-fractalkine expression regulates cellular mechanisms involved in adhesion, migration, and survival of human prostate cancer cells. Cancer Res. 64, 4693–4698 (2004).

    CAS  PubMed  Google Scholar 

  70. Burns, J. M. et al. A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J. Exp. Med. 203, 2201–2213 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Zipin-Roitman, A. et al. CXCL10 promotes invasion-related properties in human colorectal carcinoma cells. Cancer Res. 67, 3396–3405 (2007).

    CAS  PubMed  Google Scholar 

  72. Ghadjar, P. et al. Chemokine receptor CCR6 expression level and liver metastases in colorectal cancer. J. Clin. Oncol. 24, 1910–1916 (2006).

    CAS  PubMed  Google Scholar 

  73. Kulbe, H. et al. The inflammatory cytokine tumor necrosis factor-α generates an autocrine tumor-promoting network in epithelial ovarian cancer cells. Cancer Res. 67, 585–592 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kulbe, H., Hagemann, T., Szlosarek, P. W., Balkwill, F. R. & Wilson, J. L. The inflammatory cytokine tumor necrosis factor-α regulates chemokine receptor expression on ovarian cancer cells. Cancer Res. 65, 10355–10362 (2005).

    CAS  PubMed  Google Scholar 

  75. Bates, R. C. & Mercurio, A. M. Tumor necrosis factor-α stimulates the epithelial-to-mesenchymal transition of human colonic organoids. Mol. Biol. Cell 14, 1790–1800 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Luo, J. L. et al. Nuclear cytokine-activated IKKα controls prostate cancer metastasis by repressing maspin. Nature 446, 690–694 (2007).

    ADS  CAS  PubMed  Google Scholar 

  77. Condeelis, J. & Pollard, J. W. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124, 263–266 (2006).

    CAS  PubMed  Google Scholar 

  78. Wyckoff, J. B. et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res. 67, 2649–2656 (2007).

    CAS  PubMed  Google Scholar 

  79. Robinson-Smith, T. M. et al. Macrophages mediate inflammation-enhanced metastasis of ovarian tumors in mice. Cancer Res. 67, 5708–5716 (2007).

    CAS  PubMed  Google Scholar 

  80. Hagemann, T. et al. Macrophages induce invasiveness of epithelial cancer cells via NF-κB and JNK. J. Immunol. 175, 1197–1205 (2005).

    CAS  PubMed  Google Scholar 

  81. Marchesi, F. et al. Increased survival, proliferation, and migration in metastatic human pancreatic tumor cells expressing functional CXCR4. Cancer Res. 64, 8420–8427 (2004).

    CAS  PubMed  Google Scholar 

  82. Nickoloff, B. J., Ben-Neriah, Y. & Pikarsky, E. Inflammation and cancer: is the link as simple as we think? J. Invest. Dermatol. 124, x–xiv (2005).

    CAS  PubMed  Google Scholar 

  83. Hagemann, T. et al. Re-educating tumor-associated macrophages by targeting NF-κB. J. Exp. Med. 205, 1261–1268 (2008). This paper shows that NF-κB activated through the IL-1 receptor and MyD88 signalling pathway maintains the phenotype of TAMs, suggesting that tumour-promoting macrophages might be re-educated by the targeting of NF-κB.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Dajee, M. et al. NF-κB blockade and oncogenic Ras trigger invasive human epidermal neoplasia. Nature 421, 639–643 (2003).

    ADS  CAS  PubMed  Google Scholar 

  85. Coley, W. B. The treatment of malignant tumors by repeated inoculations of erysipelas: with a report of ten original cases. Am. J. Med. Sci. 105, 487–511 (1893).

    Google Scholar 

  86. Apetoh, L. et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nature Med. 13, 1050–1059 (2007).

    CAS  PubMed  Google Scholar 

  87. Sato, Y. et al. IL-10 deficiency leads to somatic mutations in a model of IBD. Carcinogenesis 27, 1068–1073 (2006).

    CAS  PubMed  Google Scholar 

  88. Bielas, J. H., Loeb, K. R., Rubin, B. P., True, L. D. & Loeb, L. A. Human cancers express a mutator phenotype. Proc. Natl Acad. Sci. USA 103, 18238–18242 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gungor, N., Godschalk, R. W. L., Pachen, D. M., Van Schooten, F. J. & Knaapen, A. M. Activated neutrophils inhibit nucleotide excision repair in human pulmonary epithelial cells: role of myeloperoxidase. FASEB J. 21, 2359–2367 (2007).

    PubMed  Google Scholar 

  90. Dally, H. et al. Myeloperoxidase (MPO) genotype and lung cancer histologic types: the MPO −463 A allele is associated with reduced risk for small cell lung cancer in smokers. Int. J. Cancer 102, 530–535 (2002).

    CAS  PubMed  Google Scholar 

  91. Rao, V. P. et al. Innate immune inflammatory response against enteric bacteria Helicobacter hepaticus induces mammary adenocarcinoma in mice. Cancer Res. 66, 7395–7400 (2006).

    CAS  PubMed  Google Scholar 

  92. Mantovani, A. Cancer: an infernal triangle. Nature 448, 547–548 (2007).

    ADS  CAS  PubMed  Google Scholar 

  93. Madhusudan, S. et al. Study of etanercept, a tumor necrosis factor-α inhibitor, in recurrent ovarian cancer. J. Clin. Oncol. 23, 5950–5959 (2005).

    CAS  PubMed  Google Scholar 

  94. Brown, E. R. et al. A clinical study assessing the tolerability and biological effects of infliximab, a TNF-α inhibitor, in patients with advanced cancer. Ann. Oncol. 19, 1340–1346 (2008).

    CAS  PubMed  Google Scholar 

  95. Harrison, M. L. et al. Tumor necrosis factor α as a new target for renal cell carcinoma: two sequential phase II trials of infliximab at standard and high dose. J. Clin. Oncol. 25, 4542–4549 (2007). The paper reports the first clinical evidence that TNF-α could be a target for treating renal-cell carcinoma.

    CAS  PubMed  Google Scholar 

  96. Weber, D. M. et al. Lenalidomide plus dexamethasone for relapsed multiple myeloma in North America. N. Engl. J. Med. 357, 2133–2142 (2007).

    CAS  PubMed  Google Scholar 

  97. Bertagnolli, M. M. et al. Celecoxib for the prevention of sporadic colorectal adenomas. N. Engl. J. Med. 355, 873–884 (2006).

    CAS  PubMed  Google Scholar 

  98. Steinbach, G. et al. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N. Engl. J. Med. 342, 1946–1952 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.M., P.A. and A.S. are supported by the Italian Association for Cancer Research, the Italian Ministry of Health, the Italian Ministry of Universities and Research, and the European Commission. F.B. is supported by Cancer Research UK, the Medical Research Council, the Association for International Cancer Research and the Higher Education Funding Council for England.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints.

Correspondence should be addressed to A.M. (alberto.mantovani@humanitas.it).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mantovani, A., Allavena, P., Sica, A. et al. Cancer-related inflammation. Nature 454, 436–444 (2008). https://doi.org/10.1038/nature07205

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07205

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing