Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Multipotent somatic stem cells contribute to the stem cell niche in the Drosophila testis

Abstract

Adult stem cells reside in specialized microenvironments, or niches, that have an important role in regulating stem cell behaviour1. Therefore, tight control of niche number, size and function is necessary to ensure the proper balance between stem cells and progenitor cells available for tissue homeostasis and wound repair. The stem cell niche in the Drosophila male gonad is located at the tip of the testis where germline and somatic stem cells surround the apical hub, a cluster of approximately 10–15 somatic cells that is required for stem cell self-renewal and maintenance2,3,4. Here we show that somatic stem cells in the Drosophila testis contribute to both the apical hub and the somatic cyst cell lineage. The Drosophila orthologue of epithelial cadherin (DE-cadherin) is required for somatic stem cell maintenance and, consequently, the apical hub. Furthermore, our data indicate that the transcriptional repressor escargot regulates the ability of somatic cells to assume and/or maintain hub cell identity. These data highlight the dynamic relationship between stem cells and the niche and provide insight into genetic programmes that regulate niche size and function to support normal tissue homeostasis and organ regeneration throughout life.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Somatic stem cell progeny contribute to the hub.
Figure 2: BrdU-labelled cells become incorporated into the apical hub.
Figure 3: Two populations of mitotically active somatic cells are present near the hub.
Figure 4: Factors required for SSC maintenance and the SSC–hub cell transition.

References

  1. Schofield, R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4, 7–25 (1978)

    CAS  PubMed  Google Scholar 

  2. Hardy, R. W., Tokuyasu, K. T., Lindsley, D. L. & Garavito, M. The germinal proliferation center in the testis of Drosophila melanogaster . J. Ultrastruct. Res. 69, 180–190 (1979)

    CAS  Article  Google Scholar 

  3. Kiger, A. A., Jones, D. L., Schulz, C., Rogers, M. B. & Fuller, M. T. Stem cell self-renewal specified by JAK-STAT activation in response to a support cell cue. Science 294, 2542–2545 (2001)

    ADS  CAS  Article  Google Scholar 

  4. Tulina, N. & Matunis, E. Control of stem cell self-renewal in Drosophila spermatogenesis by JAK-STAT signaling. Science 294, 2546–2549 (2001)

    ADS  CAS  Article  Google Scholar 

  5. Jones, D. L. & Wagers, A. J. No place like home: anatomy and function of the stem cell niche. Nature Rev. Mol. Cell. Biol. 9, 11–21 (2008)

    CAS  Article  Google Scholar 

  6. Kiger, A. A., White-Cooper, H. & Fuller, M. T. Somatic support cells restrict germline stem cell self-renewal and promote differentiation. Nature 407, 750–754 (2000)

    ADS  CAS  Article  Google Scholar 

  7. Tran, J., Brenner, T. J. & DiNardo, S. Somatic control over the germline stem cell lineage during Drosophila spermatogenesis. Nature 407, 754–757 (2000)

    ADS  CAS  Article  Google Scholar 

  8. Harrison, D. A., McCoon, P. E., Binari, R., Gilman, M. & Perrimon, N. Drosophila unpaired encodes a secreted protein that activates the JAK signaling pathway. Genes Dev. 12, 3252–3263 (1998)

    CAS  Article  Google Scholar 

  9. Gönczy, P. & DiNardo, S. The germ line regulates somatic cyst cell proliferation and fate during Drosophila spermatogenesis. Development 122, 2437–2447 (1996)

    PubMed  Google Scholar 

  10. Wallenfang, M. R., Nayak, R. & DiNardo, S. Dynamics of the male germline stem cell population during aging of Drosophila melanogaster . Aging Cell 5, 297–304 (2006)

    CAS  Article  Google Scholar 

  11. Boyle, M., Wong, C., Rocha, M. & Jones, D. L. Decline in self-renewal factors contributes to aging of the stem cell niche in the Drosophila testis. Cell Stem Cell 1, 470–478 (2007)

    CAS  Article  Google Scholar 

  12. Boyle, M. & DiNardo, S. Specification, migration and assembly of the somatic cells of the Drosophila gonad. Development 121, 1815–1825 (1995)

    CAS  PubMed  Google Scholar 

  13. Harrison, D. A. & Perrimon, N. Simple and efficient generation of marked clones in Drosophila . Curr. Biol. 3, 424–433 (1993)

    CAS  Article  Google Scholar 

  14. Gönczy, P., Viswanathan, S. & DiNardo, S. Probing spermatogenesis in Drosophila with P-element enhancer detectors. Development 114, 89–98 (1992)

    PubMed  Google Scholar 

  15. Yamashita, Y., Jones, D. L. & Fuller, M. T. Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome. Science 301, 1547–1550 (2003)

    ADS  CAS  Article  Google Scholar 

  16. Li, M. A., Alls, J. D., Avancini, R. M., Koo, K. & Godt, D. The large Maf factor Traffic Jam controls gonad morphogenesis in Drosophila . Nature Cell Biol. 5, 994–1000 (2003)

    CAS  Article  Google Scholar 

  17. Schulz, C., Wood, C. G., Jones, D. L., Tazuke, S. I. & Fuller, M. T. Signaling from germ cells mediated by the rhomboid homolog stet organizes encapsulation by somatic support cells. Development 129, 4523–4534 (2002)

    CAS  PubMed  Google Scholar 

  18. Song, X., Zhu, C. H., Doan, C. & Xie, T. Germline stem cells anchored by adherens junctions in the Drosophila ovary niches. Science 296, 1855–1857 (2002)

    ADS  CAS  Article  Google Scholar 

  19. Song, X. & Xie, T. DE-cadherin-mediated cell adhesion is essential for maintaining somatic stem cells in the Drosophila ovary. Proc. Natl Acad. Sci. USA 99, 14813–14818 (2002)

    ADS  CAS  Article  Google Scholar 

  20. Streit, A., Bernasconi, L., Sergeev, P., Cruz, A. & Steinmann-Zwicky, M. mgm 1, the earliest sex-specific germline marker in Drosophila, reflects expression of the gene esg in male stem cells. Int. J. Dev. Biol. 46, 159–166 (2002)

    CAS  PubMed  Google Scholar 

  21. Le Bras, S. & Van Doren, M. Development of the male germline stem cell niche in Drosophila . Dev. Biol. 294, 92–103 (2006)

    CAS  Article  Google Scholar 

  22. Conboy, I. M. et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433, 760–764 (2005)

    ADS  CAS  Article  Google Scholar 

  23. Adams, G. B. et al. Therapeutic targeting of a stem cell niche. Nature Biotechnol. 25, 238–243 (2007)

    CAS  Article  Google Scholar 

  24. Kaplan, R. N. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820–827 (2005)

    ADS  CAS  Article  Google Scholar 

  25. Sneddon, J. B. et al. Bone morphogenetic protein antagonist gremlin 1 is widely expressed by cancer-associated stromal cells and can promote tumor cell proliferation. Proc. Natl Acad. Sci. USA 103, 14842–14847 (2006)

    ADS  CAS  Article  Google Scholar 

  26. Nystul, T. & Spradling, A. An epithelial niche in the Drosophila ovary undergoes long-range stem cell replacement. Cell Stem Cell 1, 277–285 (2007)

    CAS  Article  Google Scholar 

  27. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank E. Bach, D. Godt, S. Hayahsi, N. Perrimon and R. Read for reagents and fly stocks, and Jones laboratory members, G. Adams, M. Buszczak, C. Schulz, S. DiNardo and M. Fuller for discussions and comments on the manuscript. This work was supported by a training grant from the California Institute for Regenerative Medicine to the University of California-San Diego (L. Goldstein). D.L.J. is funded by the Ellison Medical Foundation, the American Federation for Aging Research, the G. Harold and Leila Y. Mathers Charitable Foundation, the ACS and the NIH.

Author Contributions J.V. and D.L.J. planned experiments; J.V. and C.D’A. performed experiments and analysed data; D.L.J. wrote the manuscript; and J.V. and C.D’A. edited the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Leanne Jones.

Supplementary information

Supplementary Information 1

The file contains Supplementary Figures 1-4 and Legends; Supplementary Tables 1-3. The Supplementary Figures include a model of SSC divisions, images of DE-cadherin mutant germline clones, and additional shg RNAi images. The Supplementary Tables include data from clonal analysis, phospho-histone H3, and BrdU experiments. (PDF 9563 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Voog, J., D’Alterio, C. & Jones, D. Multipotent somatic stem cells contribute to the stem cell niche in the Drosophila testis. Nature 454, 1132–1136 (2008). https://doi.org/10.1038/nature07173

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07173

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing