Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The pathogen protein EspFU hijacks actin polymerization using mimicry and multivalency

Abstract

Enterohaemorrhagic Escherichia coli attaches to the intestine through actin pedestals that are formed when the bacterium injects its protein EspFU (also known as TccP) into host cells1. EspFU potently activates the host WASP (Wiskott–Aldrich syndrome protein) family of actin-nucleating factors, which are normally activated by the GTPase CDC42, among other signalling molecules. Apart from its amino-terminal type III secretion signal, EspFU consists of five-and-a-half 47-amino-acid repeats. Here we show that a 17-residue motif within this EspFU repeat is sufficient for interaction with N-WASP (also known as WASL). Unlike most pathogen proteins that interface with the cytoskeletal machinery, this motif does not mimic natural upstream activators: instead of mimicking an activated state of CDC42, EspFU mimics an autoinhibitory element found within N-WASP. Thus, EspFU activates N-WASP by competitively disrupting the autoinhibited state. By mimicking an internal regulatory element and not the natural activator, EspFU selectively activates only a precise subset of CDC42-activated processes. Although one repeat is able to stimulate actin polymerization, we show that multiple-repeat fragments have notably increased potency. The activities of these EspFU fragments correlate with their ability to coordinate activation of at least two N-WASP proteins. Thus, this pathogen has used a simple autoinhibitory fragment as a component to build a highly effective actin polymerization machine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: EspF U is a potent activator of N-WASP.
Figure 2: EspF U mimics the N-WASP autoinhibitory C-helix.
Figure 3: Multiple repeats of EspF U are required for potent activation of actin polymerization.

Similar content being viewed by others

References

  1. Caron, E. et al. Subversion of actin dynamics by EPEC and EHEC. Curr. Opin. Microbiol. 9, 40–45 (2006)

    Article  ADS  CAS  Google Scholar 

  2. Gruenheid, S. & Finlay, B. B. Microbial pathogenesis and cytoskeletal function. Nature 422, 775–781 (2003)

    Article  ADS  CAS  Google Scholar 

  3. Rottner, K., Lommel, S., Wehland, J. & Stradal, T. E. Pathogen-induced actin filament rearrangement in infectious diseases. J. Pathol. 204, 396–406 (2004)

    Article  CAS  Google Scholar 

  4. Campellone, K. G., Robbins, D. & Leong, J. M. EspFU is a translocated EHEC effector that interacts with Tir and N-WASP and promotes Nck-independent actin assembly. Dev. Cell 7, 217–228 (2004)

    Article  CAS  Google Scholar 

  5. Garmendia, J. et al. TccP is an enterohaemorrhagic Escherichia coli O157:H7 type III effector protein that couples Tir to the actin-cytoskeleton. Cell. Microbiol. 6, 1167–1183 (2004)

    Article  CAS  Google Scholar 

  6. Galan, J. E. & Wolf-Watz, H. Protein delivery into eukaryotic cells by type III secretion machines. Nature 444, 567–573 (2006)

    Article  ADS  CAS  Google Scholar 

  7. Kim, A. S., Kakalis, L. T., Abdul-Manan, N., Liu, G. A. & Rosen, M. K. Autoinhibition and activation mechanisms of the Wiskott–Aldrich syndrome protein. Nature 404, 151–158 (2000)

    Article  ADS  CAS  Google Scholar 

  8. Prehoda, K. E., Scott, J. A., Mullins, R. D. & Lim, W. A. Integration of multiple signals through cooperative regulation of the N-WASP–Arp2/3 complex. Science 290, 801–806 (2000)

    Article  ADS  CAS  Google Scholar 

  9. Rohatgi, R., Nollau, P., Ho, H. Y., Kirschner, M. W. & Mayer, B. J. Nck and phosphatidylinositol 4,5-bisphosphate synergistically activate actin polymerization through the N-WASP–Arp2/3 pathway. J. Biol. Chem. 276, 26448–26452 (2001)

    Article  CAS  Google Scholar 

  10. Mattoo, S., Lee, Y. M. & Dixon, J. E. Interactions of bacterial effector proteins with host proteins. Curr. Opin. Immunol. 19, 392–401 (2007)

    Article  CAS  Google Scholar 

  11. Stebbins, C. E. Structural insights into bacterial modulation of the host cytoskeleton. Curr. Opin. Struct. Biol. 14, 731–740 (2004)

    Article  CAS  Google Scholar 

  12. Mukherjee, S., Hao, Y. H. & Orth, K. A newly discovered post-translational modification — the acetylation of serine and threonine residues. Trends Biochem. Sci. 32, 210–216 (2007)

    Article  CAS  Google Scholar 

  13. Aktories, K. & Barbieri, J. T. Bacterial cytotoxins: targeting eukaryotic switches. Nature Rev. Microbiol. 3, 397–410 (2005)

    Article  CAS  Google Scholar 

  14. Zalevsky, J., Grigorova, I. & Mullins, R. D. Activation of the Arp2/3 complex by the Listeria acta protein. Acta binds two actin monomers and three subunits of the Arp2/3 complex. J. Biol. Chem. 276, 3468–3475 (2001)

    Article  CAS  Google Scholar 

  15. Alto, N. M. et al. Identification of a bacterial type III effector family with G protein mimicry functions. Cell 124, 133–145 (2006)

    Article  CAS  Google Scholar 

  16. Lommel, S., Benesch, S., Rohde, M., Wehland, J. & Rottner, K. Enterohaemorrhagic and enteropathogenic Escherichia coli use different mechanisms for actin pedestal formation that converge on N-WASP. Cell. Microbiol. 6, 243–254 (2004)

    Article  CAS  Google Scholar 

  17. Garmendia, J., Carlier, M. F., Egile, C., Didry, D. & Frankel, G. Characterization of TccP-mediated N-WASP activation during enterohaemorrhagic Escherichia coli infection. Cell. Microbiol. 8, 1444–1455 (2006)

    Article  CAS  Google Scholar 

  18. Alto, N. M. et al. The type III effector EspF coordinates membrane trafficking by the spatiotemporal activation of two eukaryotic signaling pathways. J. Cell Biol. 178, 1265–1278 (2007)

    Article  CAS  Google Scholar 

  19. McNamara, B. P. et al. Translocated EspF protein from enteropathogenic Escherichia coli disrupts host intestinal barrier function. J. Clin. Invest. 107, 621–629 (2001)

    Article  CAS  Google Scholar 

  20. Rost, B., Yachdav, G. & Liu, J. The PredictProtein server. Nucleic Acids Res. 32, W321–W326 (2004)

    Article  CAS  Google Scholar 

  21. Panchal, S. C., Kaiser, D. A., Torres, E., Pollard, T. D. & Rosen, M. K. A conserved amphipathic helix in WASP/Scar proteins is essential for activation of Arp2/3 complex. Nature Struct. Biol. 10, 591–598 (2003)

    Article  CAS  Google Scholar 

  22. Marchand, J. B., Kaiser, D. A., Pollard, T. D. & Higgs, H. N. Interaction of WASP/Scar proteins with actin and vertebrate Arp2/3 complex. Nature Cell Biol. 3, 76–82 (2001)

    Article  CAS  Google Scholar 

  23. Lei, M. et al. Structure of PAK1 in an autoinhibited conformation reveals a multistage activation switch. Cell 102, 387–397 (2000)

    Article  CAS  Google Scholar 

  24. Akin, O. & Mullins, R. D. Capping protein increases the rate of actin-based motility by promoting filament nucleation by the Arp2/3 complex. Cell 133, 841–851 (2008)

    Article  CAS  Google Scholar 

  25. Castellano, F. et al. Inducible recruitment of Cdc42 or WASP to a cell-surface receptor triggers actin polymerization and filopodium formation. Curr. Biol. 9, 351–360 (1999)

    Article  CAS  Google Scholar 

  26. Rivera, G. M., Briceno, C. A., Takeshima, F., Snapper, S. B. & Mayer, B. J. Inducible clustering of membrane-targeted SH3 domains of the adaptor protein Nck triggers localized actin polymerization. Curr. Biol. 14, 11–22 (2004)

    Article  CAS  Google Scholar 

  27. Higgs, H. N. & Pollard, T. D. Activation by Cdc42 and PIP(2) of Wiskott–Aldrich syndrome protein (WASp) stimulates actin nucleation by Arp2/3 complex. J. Cell Biol. 150, 1311–1320 (2000)

    Article  CAS  Google Scholar 

  28. Yarar, D., Waterman-Storer, C. M. & Schmid, S. L. SNX9 couples actin assembly to phosphoinositide signals and is required for membrane remodeling during endocytosis. Dev. Cell 13, 43–56 (2007)

    Article  CAS  Google Scholar 

  29. Sallee, N. A., Yeh, B. J. & Lim, W. A. Engineering modular protein interaction switches by sequence overlap. J. Am. Chem. Soc. 129, 4606–4611 (2007)

    Article  CAS  Google Scholar 

  30. Dayel, M. J., Holleran, E. A. & Mullins, R. D. Arp2/3 complex requires hydrolyzable ATP for nucleation of new actin filaments. Proc. Natl Acad. Sci. USA 98, 14871–14876 (2001)

    Article  ADS  CAS  Google Scholar 

  31. Wang, W. & Malcolm, B. A. Two-stage PCR protocol allowing introduction of multiple mutations, deletions and insertions using QuikChange Site-Directed Mutagenesis. Biotechniques 26, 680–682 (1999)

    Article  CAS  Google Scholar 

  32. Chong, C., Tan, L., Lim, L. & Manser, E. The mechanism of PAK activation. Autophosphorylation events in both regulatory and kinase domains control activity. J. Biol. Chem. 276, 17347–17353 (2001)

    Article  CAS  Google Scholar 

  33. Machesky, L. M. et al. Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex. Proc. Natl Acad. Sci. USA 96, 3739–3744 (1999)

    Article  ADS  CAS  Google Scholar 

  34. Kaiser, D. A., Goldschmidt-Clermont, P. J., Levine, B. A. & Pollard, T. D. Characterization of renatured profilin purified by urea elution from poly-L-proline agarose columns. Cell Motil. Cytoskeleton 14, 251–262 (1989)

    Article  CAS  Google Scholar 

  35. Palmgren, S., Ojala, P. J., Wear, M. A., Cooper, J. A. & Lappalainen, P. Interactions with PIP2, ADP-actin monomers, and capping protein regulate the activity and localization of yeast twinfilin. J. Cell Biol. 155, 251–260 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank O. Akin for reagents and assistance with the bead motility experiments; J. C. Anderson, A. Chau, R. Howard, M. Lohse, A. Remenyi and L. Weaver for assistance; and members of the Lim laboratory for discussion. This work was supported by grants from the NIH (NIGMS and Nanomedicine Development Centers, NIH Roadmap), the NSF and the Packard Foundation. G.M.R. was supported by the American Heart Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendell A. Lim.

Supplementary information

The file contains Supplementary Figures S1-S13 and Legends; Supplementary Methods and additional references.

The Supplementary Figures include: presentation of additional data from experiments shown in the main paper, circular dichroism, quantitative binding measurements, data for the synthetic linker construct, in vivo clustering experiment controls, analytical ultracentrifugation results and description of the Comet Detector algorithm. (PDF 5004 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sallee, N., Rivera, G., Dueber, J. et al. The pathogen protein EspFU hijacks actin polymerization using mimicry and multivalency. Nature 454, 1005–1008 (2008). https://doi.org/10.1038/nature07170

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07170

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing