Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural mechanism of WASP activation by the enterohaemorrhagic E. coli effector EspFU

Abstract

During infection, enterohaemorrhagic Escherichia coli (EHEC) takes over the actin cytoskeleton of eukaryotic cells by injecting the EspFU protein into the host cytoplasm1,2. EspFU controls actin by activating members of the Wiskott–Aldrich syndrome protein (WASP) family1,2,3,4,5. Here we show that EspFU binds to the autoinhibitory GTPase binding domain (GBD) in WASP proteins and displaces it from the activity-bearing VCA domain (for verprolin homology, central hydrophobic and acidic regions). This interaction potently activates WASP and neural (N)-WASP in vitro and induces localized actin assembly in cells. In the solution structure of the GBD–EspFU complex, EspFU forms an amphipathic helix that binds the GBD, mimicking interactions of the VCA domain in autoinhibited WASP. Thus, EspFU activates WASP by competing directly for the VCA binding site on the GBD. This mechanism is distinct from that used by the eukaryotic activators Cdc42 and SH2 domains, which globally destabilize the GBD fold to release the VCA6,7,8. Such diversity of mechanism in WASP proteins is distinct from other multimodular systems, and may result from the intrinsically unstructured nature of the isolated GBD and VCA elements. The structural incompatibility of the GBD complexes with EspFU and Cdc42/SH2, plus high-affinity EspFU binding, enable EHEC to hijack the eukaryotic cytoskeletal machinery effectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A single repeat of EspF U activates WASP/N-WASP with high potency.
Figure 2: Structures of the WASP GBD in complex with different ligands.
Figure 3: EspF U induces actin pedestal formation.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

The atomic coordinates of the 20 final lowest energy conformers have been deposited in the Protein Data Bank under accession number 2K42.

References

  1. Campellone, K. G., Robbins, D. & Leong, J. M. EspFU is a translocated EHEC effector that interacts with Tir and N-WASP and promotes Nck-independent actin assembly. Dev. Cell 7, 217–228 (2004)

    Article  CAS  Google Scholar 

  2. Garmendia, J. et al. TccP is an enterohaemorrhagic Escherichia coli O157:H7 type III effector protein that couples Tir to the actin-cytoskeleton. Cell. Microbiol. 6, 1167–1183 (2004)

    Article  CAS  Google Scholar 

  3. Campellone, K. G. et al. Enterohaemorrhagic Escherichia coli Tir requires a C-terminal 12-residue peptide to initiate EspFu-mediated actin assembly and harbours N-terminal sequences that influence pedestal length. Cell. Microbiol. 8, 1488–1503 (2006)

    Article  CAS  Google Scholar 

  4. Garmendia, J., Carlier, M. F., Egile, C., Didry, D. & Frankel, G. Characterization of TccP-mediated N-WASP activation during enterohaemorrhagic Escherichia coli infection. Cell. Microbiol. 8, 1444–1455 (2006)

    Article  CAS  Google Scholar 

  5. Lommel, S., Benesch, S., Rohde, M., Wehland, J. & Rottner, K. Enterohaemorrhagic and enteropathogenic Escherichia coli use different mechanisms for actin pedestal formation that converge on N-WASP. Cell. Microbiol. 6, 243–254 (2004)

    Article  CAS  Google Scholar 

  6. Buck, M., Xu, W. & Rosen, M. K. A two-state allosteric model for autoinhibition rationalizes WASP signal integration and targeting. J. Mol. Biol. 338, 271–285 (2004)

    Article  CAS  Google Scholar 

  7. Kim, A. S., Kakalis, L. T., Abdul-Manan, N., Liu, G. A. & Rosen, M. K. Autoinhibition and activation mechanisms of the Wiskott–Aldrich syndrome protein. Nature 404, 151–158 (2000)

    Article  ADS  CAS  Google Scholar 

  8. Torres, E. & Rosen, M. K. Contingent phosphorylation/dephosphorylation provides a mechanism of molecular memory in WASP. Mol. Cell 11, 1215–1227 (2003)

    Article  CAS  Google Scholar 

  9. Munter, S., Way, M. & Frischknecht, F. Signaling during pathogen infection. Sci. STKE 2006, re5 (2006)

    PubMed  Google Scholar 

  10. Caron, E. et al. Subversion of actin dynamics by EPEC and EHEC. Curr. Opin. Microbiol. 9, 40–45 (2006)

    Article  ADS  CAS  Google Scholar 

  11. Hayward, R. D., Leong, J. M., Koronakis, V. & Campellone, K. G. Exploiting pathogenic Escherichia coli to model transmembrane receptor signalling. Nature Rev. Microbiol. 4, 358–370 (2006)

    Article  CAS  Google Scholar 

  12. Gruenheid, S. & Finlay, B. B. Microbial pathogenesis and cytoskeletal function. Nature 422, 775–781 (2003)

    Article  ADS  CAS  Google Scholar 

  13. Galán, J. E. & Cossart, P. Host-pathogen interactions: a diversity of themes, a variety of molecular machines. Curr. Opin. Microbiol. 8, 1–3 (2005)

    Article  Google Scholar 

  14. Rangel, J. M., Sparling, P. H., Crowe, C., Griffin, P. M. & Swerdlow, D. L. Epidemiology of Escherichia coli O157:H7 outbreaks, United States, 1982–2002. Emerg. Infect. Dis. 11, 603–609 (2005)

    Article  Google Scholar 

  15. DeVinney, R. et al. Enterohemorrhagic Escherichia coli O157:H7 produces Tir, which is translocated to the host cell membrane but is not tyrosine phosphorylated. Infect. Immun. 67, 2389–2398 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Higgs, H. N. & Pollard, T. D. Regulation of actin filament network formation through Arp2/3 complex: Activation by a diverse array of proteins. Annu. Rev. Biochem. 70, 649–676 (2001)

    Article  CAS  Google Scholar 

  17. Kelly, A. E., Kranitz, H., Dotsch, V. & Mullins, R. D. Actin binding to the central domain of WASP/Scar proteins plays a critical role in the activation of the Arp2/3 complex. J. Biol. Chem. 281, 10589–10597 (2006)

    Article  CAS  Google Scholar 

  18. Panchal, S. C., Kaiser, D. A., Torres, E., Pollard, T. D. & Rosen, M. K. A conserved amphipathic helix in WASP/Scar proteins is essential for activation of Arp2/3 complex. Nature Struct. Biol. 10, 591–598 (2003)

    Article  CAS  Google Scholar 

  19. Rohatgi, R. et al. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97, 221–231 (1999)

    Article  CAS  Google Scholar 

  20. Buck, M., Xu, W. & Rosen, M. K. Global disruption of the WASP autoinhibited structure on Cdc42 binding. Ligand displacement as a novel method for monitoring amide hydrogen exchange. Biochemistry 40, 14115–14122 (2001)

    Article  CAS  Google Scholar 

  21. Leung, D. W. & Rosen, M. K. The nucleotide switch in Cdc42 modulates coupling between the GTPase-binding and allosteric equilibria of Wiskott–Aldrich syndrome protein. Proc. Natl Acad. Sci. USA 102, 5685–5690 (2005)

    Article  ADS  CAS  Google Scholar 

  22. Garmendia, J. et al. Distribution of tccP in clinical enterohemorrhagic and enteropathogenic Escherichia coli isolates. J. Clin. Microbiol. 43, 5715–5720 (2005)

    Article  CAS  Google Scholar 

  23. Alto, N. M. et al. The type III effector EspF coordinates membrane trafficking by the spatiotemporal activation of two eukaryotic signaling pathways. J. Cell Biol. 178, 1265–1278 (2007)

    Article  CAS  Google Scholar 

  24. Volkman, B. F., Prehoda, K. E., Scott, J. A., Peterson, F. C. & Lim, W. A. Structure of the N-WASP EVH1 domain-WIP complex: insight into the molecular basis of Wiskott–Aldrich Syndrome. Cell 111, 565–576 (2002)

    Article  CAS  Google Scholar 

  25. Higgs, H. N., Blanchoin, L. & Pollard, T. D. Influence of the C terminus of Wiskott-Aldrich syndrome protein (WASp) and the Arp2/3 complex on actin polymerization. Biochemistry 38, 15212–15222 (1999)

    Article  CAS  Google Scholar 

  26. Cooper, J. A. & Pollard, T. D. Methods to measure actin polymerization. Methods Enzymol. 85, 182–210 (1982)

    Article  CAS  Google Scholar 

  27. Leung, D. W., Morgan, D. M. & Rosen, M. K. Biochemical properties and inhibitors of (N-)WASP. Methods Enzymol. 406, 281–296 (2006)

    Article  CAS  Google Scholar 

  28. Pace, C. N. Measuring and increasing protein stability. Trends Biotechnol. 8, 93–98 (1990)

    Article  CAS  Google Scholar 

  29. Campellone, K. G., Giese, A., Tipper, D. J. & Leong, J. M. A tyrosine-phosphorylated 12-amino-acid sequence of enteropathogenic Escherichia coli Tir binds the host adaptor protein Nck and is required for Nck localization to actin pedestals. Mol. Microbiol. 43, 1227–1241 (2002)

    Article  CAS  Google Scholar 

  30. Rieping, W. et al. ARIA2: automated NOE assignment and data integration in NMR structure calculation. Bioinformatics 23, 381–382 (2007)

    Article  CAS  Google Scholar 

  31. Goto, N. K., Gardner, K. H., Mueller, G. A., Willis, R. C. & Kay, L. E. A robust and cost-effective method for the production of Val, Leu, Ile (δ1) methyl-protonated 15N-, 13C-, 2H-labeled proteins. J. Biomol. NMR 13, 369–374 (1999)

    Article  CAS  Google Scholar 

  32. Gardner, K. H. & Kay, L. E. Production and incorporation of 15N, 13C, 2H (1H-δ1 methyl) isoleucine into proteins for multidimensional NMR studies. J. Am. Chem. Soc. 119, 7599–7600 (1997)

    Article  CAS  Google Scholar 

  33. Clore, G. M. & Gronenborn, A. M. Multidimensional heteronuclear nuclear magnetic resonance of proteins. Methods Enzymol. 239, 349–363 (1994)

    Article  CAS  Google Scholar 

  34. Muhandiram, D. R. & Kay, L. E. Gradient-enhanced triple-resonance three-dimensional NMR experiments with improved sensitivity. J. Magn. Reson. B 103, 203–216 (1994)

    Article  CAS  Google Scholar 

  35. Clore, G. M., Kay, L. E., Bax, A. & Gronenborn, A. M. Four-dimensional 13C/13C-edited nuclear Overhauser enhancement spectroscopy of a protein in solution: application to interleukin 1β. Biochemistry 30, 12–18 (1991)

    Article  CAS  Google Scholar 

  36. Zwahlen, C. et al. Methods for measurement of intermolecular NOEs by multinuclear NMR spectroscopy: application to a bacteriophage λ N-peptide/boxB RNA complex. J. Am. Chem. Soc. 119, 6711–6721 (1997)

    Article  CAS  Google Scholar 

  37. Cornilescu, G., Delaglio, F. & Bax, A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289–302 (1999)

    Article  CAS  Google Scholar 

  38. Linge, J. P., Williams, M. A., Spronk, C. A., Bonvin, A. M. & Nilges, M. Refinement of protein structures in explicit solvent. Proteins 50, 496–506 (2003)

    Article  CAS  Google Scholar 

  39. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995)

    Article  CAS  Google Scholar 

  40. Johnson, B. A. & Blevins, R. A. NMR View: A computer program for the visualization and analysis of NMR data. J. Biomol. NMR 4, 603–614 (1994)

    Article  CAS  Google Scholar 

  41. Laskowski, R. A., Rullmannn, J. A., MacArthur, M. W., Kaptein, R. & Thornton, J. M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486 (1996)

    Article  CAS  Google Scholar 

  42. Carson, M., Charles, W. C. & Robert, M. S. Methods in Enzymology 493–502 (Academic, 1997)

    Google Scholar 

  43. DeLano, W. L. The PyMOL User’s Manual (DeLano Scientific, 2002)

    Google Scholar 

Download references

Acknowledgements

We thank T. Otomo for discussion and assistance on biochemical assays and NMR spectroscopy; P. Li, I. Martins, C. A. Amezcua, K. H. Gardner and Q. Wu for assistance with NMR spectroscopy and structure calculations; G. K. Amarasinghe and D. W. Leung for sharing reagents; D. Trobaugh, J. Rennie and D. Robbins for technical assistance; S. B. Padrick for help with Mathematica and X. Yao and S. B. Padrick for assistance in writing and for critical reading of the manuscript. This work was supported by grants from the National Institute of Health (NIH-R01-GM56322 to M.K.R.; NIH-R01-AI46454 to J.M.L.), Welch Foundation (I–1544 to M.K.R.) and a Chilton Foundation Fellowship to H.-C.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael K. Rosen.

Supplementary information

Supplementary Information 1

This file contains Supplementary Table S1 and Supplementary Figures S1- S13 with Legends. (PDF 12456 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, HC., Skehan, B., Campellone, K. et al. Structural mechanism of WASP activation by the enterohaemorrhagic E. coli effector EspFU. Nature 454, 1009–1013 (2008). https://doi.org/10.1038/nature07160

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07160

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing