Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Scaling the Kondo lattice


The origin of magnetic order in metals has two extremes: an instability in a liquid of local magnetic moments interacting through conduction electrons, and a spin-density wave instability in a Fermi liquid of itinerant electrons. This dichotomy between ‘local-moment’ magnetism and ‘itinerant-electron’ magnetism is reminiscent of the valence bond/molecular orbital dichotomy present in studies of chemical bonding. The class of heavy-electron intermetallic compounds of cerium, ytterbium and various 5f elements bridges the extremes, with itinerant-electron magnetic characteristics at low temperatures that grow out of a high-temperature local-moment state1. Describing this transition quantitatively has proved difficult, and one of the main unsolved problems is finding what determines the temperature scale for the evolution of this behaviour. Here we present a simple, semi-quantitative solution to this problem that provides a basic framework for interpreting the physics of heavy-electron materials and offers the prospect of a quantitative determination of the physical origin of their magnetic ordering and superconductivity. It also reveals the difference between the temperature scales that distinguish the conduction electrons’ response to a single magnetic impurity and their response to a lattice of local moments, and provides an updated version of the well-known Doniach diagram2.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Confirmation of T* given by the intersite RKKY interaction for a variety of Kondo lattice materials.
Figure 2: Updated Doniach diagram for Kondo lattice materials.


  1. von Löhneysen, H., Rosch, A., Vojta, M. & Wölfle, P. Fermi-liquid instabilities at magnetic quantum phase transitions. Rev. Mod. Phys. 79, 1015–1075 (2007)

    ADS  Article  Google Scholar 

  2. Doniach, S. The Kondo lattice and weak antiferromagnetism. Physica B 91, 231–234 (1977)

    Article  Google Scholar 

  3. Hewson, A. C. The Kondo Problem to Heavy Fermions (Cambridge Univ. Press, 1993)

    Book  Google Scholar 

  4. Nakatsuji, S., Pines, D. & Fisk, Z. Two fluid description of the Kondo lattice. Phys. Rev. Lett. 92, 016401 (2004)

    ADS  Article  Google Scholar 

  5. Curro, N. J., Young, B.-L., Schmalian, J. & Pines, D. Scaling in the emergent behavior of heavy-electron materials. Phys. Rev. B 70, 235117 (2004)

    ADS  Article  Google Scholar 

  6. Yang, Y.-F. & Pines, D. Universal behavior in heavy-electron materials. Phys. Rev. Lett. 100, 096404 (2008)

    ADS  Article  Google Scholar 

  7. Nakatsuji, S. et al. Intersite coupling effects in a Kondo lattice. Phys. Rev. Lett. 89, 106402 (2002)

    ADS  CAS  Article  Google Scholar 

  8. Hegger, H. et al. Pressure-induced superconductivity in quasi-2D CeRhIn5. Phys. Rev. Lett. 84, 4986–4989 (2000)

    ADS  CAS  Article  Google Scholar 

  9. Marabelli, F. & Wachter, P. Temperature dependence of the optical conductivity of the heavy-fermion system CeCu6 . Phys. Rev. B 42, 3307–3311 (1990)

    ADS  CAS  Article  Google Scholar 

  10. Satoh, K., Fujita, T., Maeno, Y., Ōnuki, Y. & Komatsubara, T. Low-temperature specific heat of CexLa1-xCu6 . J. Phys. Soc. Jpn 58, 1012–1020 (1989)

    ADS  CAS  Article  Google Scholar 

  11. Aliev, F. G., Brandt, N. B., Moshchalkov, V. V. & Chudinov, S. M. Electric and magnetic properties of the Kondo-lattice compound CeCu2Si2 . J. Low Temp. Phys. 57, 61–93 (1984)

    ADS  CAS  Article  Google Scholar 

  12. Goremychkin, E. A., Osborn, R. & Muzychka, A. Yu. Crystal-field effects in PrCu2Si2: An evaluation of evidence for heavy-fermion behavior. Phys. Rev. B 50, 13863–13866 (1994)

    ADS  CAS  Article  Google Scholar 

  13. Dürkop, D. et al. Antiferromagnetic order and 4f-instability of CePb3 . Z. Phys. B 63, 55–61 (1986)

    ADS  Article  Google Scholar 

  14. Lin, C. L., Wallash, A., Crow, J. E., Mihalisin, T. & Schlottmann, P. Heavy-fermion behavior and the single-ion Kondo model. Phys. Rev. Lett. 58, 1232–1235 (1987)

    ADS  CAS  Article  Google Scholar 

  15. Besnus, M. J., Braghta, A. & Meyer, A. Kondo behaviour in magnetic (Ce-La)Pd2Si2 . Z. Phys. B 83, 207–211 (1991)

    ADS  CAS  Article  Google Scholar 

  16. Palstra, T. T. M. et al. Superconductivity in the ternary rare-earth (Y, La, and Lu) compounds RPd2Si2 and RRh2Si2 . Phys. Rev. B 34, 4566–4570 (1986)

    ADS  CAS  Article  Google Scholar 

  17. Ghosh, K., Ramakrishnan, S., Malik, S. K. & Chandra, G. Resistivity and magnetic-susceptibility studies in the RPd2Al3 (R = La, Ce, Pr, Nd, and Sm) system. Phys. Rev. B 48, 6249–6254 (1993)

    ADS  CAS  Article  Google Scholar 

  18. Medina, A. N., Rojas, D. P., Gandra, F. G., Azanha, W. R. & Cardoso, L. P. Change of the Kondo regime in CePd2Al3 induced by chemical substitution: Verification of the Doniach diagram. Phys. Rev. B 59, 8738–8744 (1999)

    ADS  CAS  Article  Google Scholar 

  19. Zapf, V. S., Dickey, R. P., Freeman, E. J., Sirvent, C. & Maple, M. B. Magnetic and non-Fermi-liquid properties of U1-xLaxPd2Al3 . Phys. Rev. B 65, 024437 (2001)

    ADS  Article  Google Scholar 

  20. Kitaoka, Y., Arimoto, H., Kohori, Y. & Asayama, K. NMR study of the dense Kondo compound CeRu2Si2 . J. Phys. Soc. Jpn 54, 3236–3239 (1985)

    ADS  CAS  Article  Google Scholar 

  21. Matsuhira, K. et al. Single-site and inter-site effects in heavy fermion compound CeRu2Si2 studied by constant volume dilution. J. Phys. Soc. Jpn 66, 2851–2863 (1997)

    ADS  CAS  Article  Google Scholar 

  22. Ott, H. R., Rudigier, H., Delsing, P. & Fisk, Z. Magnetic ground state of a heavy-electron system: U2Zn17 . Phys. Rev. Lett. 52, 1551–1554 (1984)

    ADS  CAS  Article  Google Scholar 

  23. Takagi, S., Suzuki, H. & Anzai, K. Kondo effect of U impurities in dilute (YU)2Zn17 . J. Phys. Soc. Jpn 70, 3098–3106 (2001)

    ADS  CAS  Article  Google Scholar 

  24. Yokoyama, M., Amitsuka, H., Kuwahara, K., Tenya, K. & Sakakibara, T. Anomalous Fermi liquid behavior of the dilute uranium alloys La1-xUxRu2Si2 (x≤0.07). J. Phys. Soc. Jpn 71, 3037–3042 (2002)

    ADS  CAS  Article  Google Scholar 

  25. van der Meulen, H. P. et al. Field suppression of the heavy-fermion state in CeRu2Si2 . Phys. Rev. B 44, 814–818 (1991)

    ADS  CAS  Article  Google Scholar 

  26. Sonier, J. E. et al. μ+ Knight shift measurements in U0. 965Th0. 035Be13 single crystals. Phys. Rev. Lett. 85, 2821–2824 (2000)

    ADS  CAS  Article  Google Scholar 

  27. Kim, J. S., Andraka, B., Jee, C. S., Roy, S. B. & Stewart, G. R. Single-ion effects in the formation of the heavy-fermion ground state in UBe13 . Phys. Rev. B 41, 11073–11081 (1990)

    ADS  CAS  Article  Google Scholar 

  28. Kyogaku, M. et al. NMR and NQR studies of magnetism and superconductivity in the antiferromagnetic heavy fermion superconductors UM2Al3 (M = Ni and Pd). J. Phys. Soc. Jpn 62, 4016–4030 (1993)

    CAS  Article  Google Scholar 

  29. Li, S. et al. Physical properties of Lu1-xYbxNi2B2C. Phil. Mag. 86, 3021–3041 (2006)

    ADS  CAS  Article  Google Scholar 

  30. Jullien, R., Fields, J. N. & Doniach, S. Zero-temperature real-space renormalization-group method for a Kondo-lattice model Hamiltonian. Phys. Rev. B 16, 4889–4900 (1977)

    ADS  CAS  Article  Google Scholar 

Download references


We thank our colleagues at the August 2007 ICAM workshop on 1-1-5 materials, where this work originated, for many useful discussions and V. Sidorov for sharing unpublished measurements of the resistivities of LaRhIn5 and La0.975Ce0.025RhIn5 at pressures to 5 GPa. Y.Y. wishes to thank ICAM for the fellowship that has made this collaboration possible. Z.F. was supported by NSF grant NSF-DMR-0710492. D.P. acknowledges support from start-up funding from the Physics Department of the University of California, Davis. Work at Los Alamos was performed under the auspices of the US Department of Energy, Office of Science, and supported in part by the Los Alamos Directed Research and Development program.

Author Contributions The data analysis is primarily due to Y.Y., with some contributions from D.P., who with Z.F. developed some of the basic physical ideas tested here. Experiments on Ce1-x Lax</emph>RhIn5 under pressure were carried out by H.-O.L. and J.D.T.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Yi-feng Yang.

Supplementary information

Supplementary information

The file contains Supplementary Discussion with Supplementary Table 1, Supplementary Figures and Legends 1-7, and additional references, describing in detail the different methods used to estimate T* and TK for each material. All data souces are included in Supplementary Table 1. (PDF 652 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yang, Yf., Fisk, Z., Lee, HO. et al. Scaling the Kondo lattice. Nature 454, 611–613 (2008).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing