Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rapid change in drift of the Australian plate records collision with Ontong Java plateau

Abstract

The subduction of oceanic plateaux, which contain extraordinarily thick basaltic crust and are the marine counterparts of continental flood-basalt provinces, is an important factor in many current models of plate motion1,2,3,4 and provides a potential mechanism for triggering plate reorganization5. To evaluate such models, it is essential to decipher the history of the collision between the largest and thickest of the world’s oceanic plateaux, the Ontong Java plateau, and the Australian plate, but this has been hindered by poor constraints for the arrival of the plateau at the Melanesian trench. Here we present 40Ar–39Ar geochronological data on hotspot volcanoes in eastern Australian that reveal a strong link between collision of the Greenland-sized Ontong Java plateau with the Melanesian arc and motion of the Australian plate. The new ages define a short-lived period of reduced northward plate motion between 26 and 23 Myr ago, coincident with an eastward offset in the contemporaneous tracks of seamount chains in the Tasman Sea east of Australia. These features record a brief westward deflection of the Australian plate as the plateau entered and choked the Melanesian trench 26 Myr ago. From 23 Myr ago, Australia returned to a rapid northerly trajectory at roughly the same time that southwest-directed subduction began along the Trobriand trough6. The timing and brevity of this collisional event correlate well with offsets in hotspot seamount tracks on the Pacific plate, including the archetypal Hawaiian chain7, and thus provide strong evidence that immense oceanic plateaux, like the Ontong Java, can contribute to initiating rapid change in plate boundaries and motions on a global scale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simplified reconstructions of the western Pacific.
Figure 2: Distribution of Cenozoic volcanism on the Australian plate.
Figure 3: Ages obtained by 40Ar– 39Ar dating for silicic volcanic rocks versus latitude, showing abrupt change in volcanic migration rate.

Similar content being viewed by others

References

  1. Wessel, P. & Kroenke, L. W. Ontong Java Plateau and late Neogene changes in Pacific plate motion. J. Geophys. Res. 105, 28255–28277 (2000)

    Article  ADS  Google Scholar 

  2. Hall, R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer-based reconstructions, model and animations. J. Asian Earth Sci. 20, 353–431 (2002)

    Article  ADS  Google Scholar 

  3. Gaina, C. & Müller, D. Cenozoic tectonic and depth/age evolution of the Indonesian gateway and associated back-arc basins. Earth Sci. Rev. 83, 177–203 (2007)

    Article  ADS  Google Scholar 

  4. Wessel, P. & Kroenke, L. W. Reconciling late Neogene Pacific absolute and relative plate motion changes. Geochem. Geophys. Geosyst. 8 doi: 10.1029/2007GC001636 (2007)

  5. Cloos, M. Lithospheric buoyancy and collisional orogenesis: Subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts. Geol. Soc. Am. Bull. 105, 715–737 (1993)

    Article  ADS  Google Scholar 

  6. Quarles van Ufford, A. & Cloos, M. Cenozoic tectonics of New Guinea. Am. Assoc. Petrol. Geol. Bull. 89, 119–140 (2005)

    Google Scholar 

  7. Kroenke, L. W., Wessel, P. & Sterling, A. in Origin and Evolution of the Ontong Java Plateau (eds Fitton, J. G., Mahoney, J. J., Wallace, P. J. & Saunders, A. D.) Geol. Soc. London Spec. Publ. 229, 9–20 (Geol. Soc. Publishing House, Bath, 2004)

    Google Scholar 

  8. Neal, C. R., Mahoney, J. J., Kroenke, L. W., Duncan, R. A. & Petterson, M. G. in Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism (eds Mahoney, J.J. & Coffin, M. F.) Am. Geophys. Union Geophys. Monogr. 100, 183–216 (1997)

    Google Scholar 

  9. Coffin, M. F. & Eldholm, O. Scratching the surface: estimating dimensions of large igneous provinces. Geology 21, 515–518 (1993)

    Article  ADS  Google Scholar 

  10. Sharp, W. D. & Clague, D. A. 50-Ma initiation of Hawaiian–Emperor bend records major change in Pacific Plate motion. Science 313, 1281–1284 (2006)

    Article  ADS  CAS  Google Scholar 

  11. Petterson, M. G. et al. Structure and deformation of north and central Malaita, Solomon Islands: Tectonic implications for the Ontong Java Plateau–Solomon arc collision, and for the fate of oceanic plateaus. Tectonophysics 283, 1–33 (1997)

    Article  ADS  Google Scholar 

  12. Cooper, P. A. & Taylor, B. Polarity reversal in the Solomon Islands arc. Nature 314, 428–430 (1985)

    Article  ADS  Google Scholar 

  13. Mann, P. & Taira, A. Global tectonic significance of the Solomon Islands and Ontong Java Plateau convergent zone. Tectonophysics 389, 137–190 (2004)

    Article  ADS  Google Scholar 

  14. Morgan, W. J. Convection plumes in the lower mantle. Nature 230, 42–43 (1971)

    Article  ADS  Google Scholar 

  15. Clouard, V. & Bonneville, A. How many Pacific hotspots are fed by deep-mantle plumes? Geology 29, 695–698 (2001)

    Article  ADS  Google Scholar 

  16. Tarduno, J. A. et al. The Emperor seamounts: Southward motion of the Hawaiian hotspot plume in Earth's mantle. Science 301, 1064–1069 (2003)

    Article  ADS  CAS  Google Scholar 

  17. Foulger, G. R. & Natland, J. H. Is ‘hotspot’ volcanism a consequence of plate tectonics? Science 300, 921–922 (2003)

    Article  CAS  Google Scholar 

  18. DePaolo, D. J. & Manga, M. Deep origin of hotspots: The mantle plume model. Science 300, 920–921 (2003)

    Article  CAS  Google Scholar 

  19. Courtillot, V., Davaille, A., Besse, J. & Stock, J. Three distinct types of hotspots in the Earth’s mantle. Earth Planet. Sci. Lett. 205, 295–308 (2003)

    Article  ADS  CAS  Google Scholar 

  20. Montelli, R. et al. Finite-frequency tomography reveals a variety of plumes in the mantle. Science 303, 338–343 (2004)

    Article  ADS  CAS  Google Scholar 

  21. O'Neill, C., Müller, R. D. & Steinberger, B. On the uncertainties in hot spot reconstructions and the significance of moving hot spot reference frames. Geochem. Geophys. Geosyst. 6, 10.1029/2004GC000784 (2005)

  22. McDougall, I. & Duncan, R. A. Age progressive volcanism in the Tasmantid seamounts. Earth Planet. Sci. Lett. 89, 207–220 (1988)

    Article  ADS  CAS  Google Scholar 

  23. Duncan, R. A. & McDougall, I. in Intraplate Volcanism in Eastern Australia and New Zealand (ed. Johnson, R. W.) 43–53 (Cambridge Univ. Press, 1989)

    Google Scholar 

  24. Koppers, A. A. P., Duncan, R. A. & Steinberger, B. Implications of a nonlinear 40Ar/39Ar age progression along the Louisville seamount trail for models of fixed and moving hot spots. Geochem. Geophys. Geosyst. 5 doi: 10.1029/2003GC000671 (2004)

  25. Cohen, B. E., Vasconcelos, P. M. & Knesel, K. M. 40Ar/39Ar constraints on the timing of Oligocene intraplate volcanism in southeast Queensland. Aust. J. Earth Sci. 54, 105–125 (2007)

    Article  ADS  CAS  Google Scholar 

  26. Ashley, P. M., Duncan, R. A. & Feebrey, C. A. Ebor Volcano and Crescent Complex, northeastern New South Wales: Age and geological development. Aust. J. Earth Sci. 42, 471–480 (1995)

    Article  ADS  Google Scholar 

  27. Wellman, P. Palaeomagnetism of two Mid-Tertiary basaltic volcanoes in Queensland Australia. Proc. R. Soc. Qld 86, 147–153 (1975)

    Google Scholar 

  28. McElhinny, M. W., Embleton, B. J. J. & Wellman, P. A synthesis of Australian Cenozoic palaeomagnetic results. Geophys. J. R. Astr. Soc. 36, 141–151 (1974)

    Article  ADS  Google Scholar 

  29. Müller, R. D., Royer, J.-Y. & Lawver, L. A. Revised plate motions relative to the hotspots from combined Atlantic and Indian Ocean hotspot tracks. Geology 21, 275–278 (1993)

    Article  ADS  Google Scholar 

  30. Ewart, A., Chappell, B. W. & Le Maitre, R. W. Aspects of the mineralogy and chemistry of the intermediate-silicic Cainozoic volcanic rocks of eastern Australia. Part 1: Introduction and geochemistry. Aust. J. Earth Sci. 32, 359–382 (1985)

    Article  ADS  Google Scholar 

  31. Renne, P. R. et al. Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chem. Geol. 145, 117–152 (1998)

    Article  ADS  CAS  Google Scholar 

  32. Vasconcelos, P. M., Onoe, A. T., Kawashita, K., Soares, A. J. & Teixeira, W. 40Ar/39Ar geochronology at the Instituto de Geociências, USP: Instrumentation, analytical procedures, and calibration. Ann. Brazil. Acad. Sci. 74, 297–342 (2002)

    Article  CAS  Google Scholar 

  33. Steiger, R. H. & Jäger, E. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochemistry. Earth Planet. Sci. Lett. 36, 359–362 (1977)

    Article  ADS  CAS  Google Scholar 

  34. Vasconcelos, P. M. K–Ar and 40Ar/39Ar geochronology of weathering processes. Annu. Rev. Earth Planet. Sci. 27, 183–229 (1999)

    Article  ADS  CAS  Google Scholar 

  35. Nier, A. O. A redetermination of the relative abundances of the isotopes of carbon, nitrogen, argon and potassium. Phys. Rev. 77, 789–793 (1950)

    Article  ADS  CAS  Google Scholar 

  36. McDougall, I. & Harrison, T. M. Geochronology and Thermochronology by the 40Ar/39Ar Method. (Oxford Univ. Press, New York, 1999)

    Google Scholar 

  37. Kelley, S. Excess argon in K–Ar and Ar–Ar geochronology. Chem. Geol. 188, 1–22 (2002)

    Article  ADS  CAS  Google Scholar 

  38. Ludwig, K. R. Isoplot Version 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Spec. Publ. 4, (Berkeley Geochronology Center, 2003)

    Google Scholar 

  39. Tregoning, P. Plate kinematics in the western Pacific derived from geodetic observations. J. Geophys. Res. 107, ECV 7-1–8 (2002)

    Article  Google Scholar 

  40. Petkovic, P. & Buchanan, C. Australian Bathymetry and Topography Grid [Digital Dataset] (Geoscience Australia, Canberra, 2002)

    Google Scholar 

Download references

Acknowledgements

We thank M. Cloos, A. Ewart, M. Gasparon, A. Koppers, G. Rosenbaum and W. Sharp for comments; the Queensland and New South Wales Parks and Wildlife Services and various landowners for permission to undertake fieldwork on their properties; and A. Ewart and F. L. Sutherland for providing samples. Construction of the University of Queensland Argon Geochronology in Earth Sciences laboratory (UQ-AGES) was partially funded by the ARC; this project was funded through UQ-AGES contract research and an Australian Postgraduate award to B.E.C.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kurt M. Knesel or Benjamin E. Cohen.

Supplementary information

The file contains Supplementary Figures 1-7 with Legends and Supplementary Tables 1-3

The file contains 40Ar/39Ar incremental-heating spectra, total-fusion results, and isochron diagrams for the Main Range, Tweed, Belmore, Ebor and Comboyne central volcanoes in eastern Australia in Supplementary Figures 1-5. Supplementary Figure 6 shows 40Ar/39Ar incremental-heating results for the international standard GA1550. Supplementary Figure 7 shows half-spreading rates for Australia and Antarctica for the last ~40 million years, calculated from seafloor-spreading magnetic anomalies, which provide independent evidence for a reduction in Australian plate velocity at 26 Ma. The caption to Supplementary Figure 7 also contains a brief discussion of paleomagnetic evidence, from both the marine and continental records, in support of the identified plate-motion change between 26-23Ma. The file also contains Supplementary Tables 1 and 2 that provide sample locality information and a summary of incremental-heating and total-fusion 40Ar/39Ar results, respectively. Supplementary Table 3 provides the full 40Ar/39Ar analytical dataset, including J factors and discrimination values. (PDF 4736 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knesel, K., Cohen, B., Vasconcelos, P. et al. Rapid change in drift of the Australian plate records collision with Ontong Java plateau. Nature 454, 754–757 (2008). https://doi.org/10.1038/nature07138

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07138

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing