Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Calendars with Olympiad display and eclipse prediction on the Antikythera Mechanism

Abstract

Previous research on the Antikythera Mechanism established a highly complex ancient Greek geared mechanism with front and back output dials1,2,3,4,5,6,7. The upper back dial is a 19-year calendar, based on the Metonic cycle, arranged as a five-turn spiral1,6,8. The lower back dial is a Saros eclipse-prediction dial, arranged as a four-turn spiral of 223 lunar months, with glyphs indicating eclipse predictions6. Here we add surprising findings concerning these back dials. Though no month names on the Metonic calendar were previously known, we have now identified all 12 months, which are unexpectedly of Corinthian origin. The Corinthian colonies of northwestern Greece or Syracuse in Sicily are leading contenders—the latter suggesting a heritage going back to Archimedes. Calendars with excluded days to regulate month lengths, described in a first century bc source9, have hitherto been dismissed as implausible10,11. We demonstrate their existence in the Antikythera calendar, and in the process establish why the Metonic dial has five turns. The upper subsidiary dial is not a 76-year Callippic dial as previously thought8, but follows the four-year cycle of the Olympiad and its associated Panhellenic Games. Newly identified index letters in each glyph on the Saros dial show that a previous reconstruction needs modification6. We explore models for generating the unusual glyph distribution, and show how the eclipse times appear to be contradictory. We explain the four turns of the Saros dial in terms of the full moon cycle and the Exeligmos dial as indicating a necessary correction to the predicted eclipse times. The new results on the Metonic calendar, Olympiad dial and eclipse prediction link the cycles of human institutions with the celestial cycles embedded in the Mechanism’s gearwork.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The ‘instruction manual’.
Figure 2: The back dials.
Figure 3: Deciphering the Metonic and Olympiad dials.
Figure 4: The glyphs.

Similar content being viewed by others

References

  1. Price, D. de S. Gears from the Greeks: The Antikythera Mechanism — A calendar computer from ca. 80 BC. Trans. Am. Phil. Soc. New Ser. 64, 1–70 (1974); reprinted by Science History Publications, New York, 1975)

    Article  Google Scholar 

  2. Wright, M. T. Epicyclic gearing and the Antikythera Mechanism, Part I. Antiquar. Horol. 27, 270–279 (2003)

    Google Scholar 

  3. Wright, M. T. The Antikythera Mechanism: A new gearing scheme. Bull. Sci. Instrum. Soc. 85, 2–7 (2005)

    Google Scholar 

  4. Wright, M. T. Epicyclic gearing and the Antikythera Mechanism, Part II. Antiquar. Horol. 29, 51–63 (2005)

    Google Scholar 

  5. Wright, M. T. The Antikythera Mechanism and the early history of the moon-phase display. Antiquar. Horol. 29, 319–329 (2006)

    Google Scholar 

  6. Freeth, T. et al. Decoding the ancient Greek astronomical calculator known as the Antikythera Mechanism. Nature 444, 587–591 (2006)

    Article  ADS  CAS  Google Scholar 

  7. Edmunds, M. et al. The Antikythera Mechanism research project. 〈http://www.antikythera-mechanism.gr〉 (2008)

  8. Wright, M. T. Counting months and years: The upper back dial of the Antikythera Mechanism. Bull. Sci. Instrum. Soc. 87, 8–13 (2005)

    Google Scholar 

  9. Evans, J. & Berggren, J. L. Geminos’s Introduction to the Phenomena (Princeton Univ. Press, Princeton, 2006)

    Google Scholar 

  10. Neugebauer, O. A History of Ancient Mathematical Astronomy 617 (Springer, New York, 1975)

    Book  Google Scholar 

  11. Toomer, G. J. Ptolemy’s Almagest (Duckworth, London, 1984)

    Google Scholar 

  12. Malzbender, T. & Gelb, D. Polynomial Texture Mapping (PTM). 〈http://www.hpl.hp.com/research/ptm〉 (2006)

  13. Hadland, R. et al. Antikythera mechanism research project: The inspection. 〈http://www.xtekxray.com/applications/antikythera.html〉 (2008)

  14. Hannah, R. Greek & Roman Calendars: Constructions of Time in the Classical World 170 (Duckworth, London, 2005)

    Google Scholar 

  15. Jones, A. I: New Callippic dates. Z. Papyrologie Epigraphik 129, 141–158 (2000)

    Google Scholar 

  16. Trümpy, C. Untersuchungen zu den altgriechischen Monatsnamen und Monatsfolgen (Bibliothek der Klassischen Altertumswissenschaften, NF, 2nd series, Vol. 98, Carl Winter, Heidelberg, 1997)

    Google Scholar 

  17. Keyes, C. W. Cicero XVI, De Re Publica, Book 1, Sect. xiv, Para. 22 (Loeb Classical Library No. 213, Harvard Univ. Press, Cambridge, Massachusetts, 1928)

    Google Scholar 

  18. Hultsch, F. Pappi Alexandrini collectionis quae supersunt 1026 (Book 8, Vol. 3, Weidmann, Berlin, 1878)

    Google Scholar 

  19. Economou, N. A. in Antikythera Mechanism. Astronomical Measurement Instruments from Ancient Greek Tradition (eds Economou, N. A., Nikolantonakis, K. & Nitsiou, P.) 14 (Technology Museum of Thessaloniki, Thessaloniki, 2000)

    Google Scholar 

  20. Dillon, M. Pilgrims and Pilgrimage in Ancient Greece 99–106 (Routledge, London, 1997)

    Google Scholar 

  21. Cabanes, P. Les concours des Naia de Dodone. Nikephoros - Zeitschrift Fur Sport und Kultur Im Altertum 1, 49–84 (1988)

    Google Scholar 

  22. Espenak, F. NASA eclipse web site. 〈http://eclipse.gsfc.nasa.gov/eclipse.html〉 (2008)

  23. Britton, J. P. in Die Rolle der Astronomie in den Kulturen Mesopotamiens (ed. Galter, H. D.) 61–76 (rm-Druck & Vergansgesellschaft, Graz, 1993)

    Google Scholar 

  24. Steele, J. M. Eclipse prediction in Mesopotamia. Arch. Hist. Exact Sci. 54, 421–454 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  25. Aaboe, A. Remarks on the theoretical treatment of eclipses in antiquity. J. Hist. Astron. 3, 105–118 (1972)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was carried out under the aegis of the Antikythera Mechanism Research Project with the collaboration of M. G. Edmunds, J. Seiradakis, X. Moussas, A. Tselikas and the National Archaeological Museum in Athens. We acknowledge the essential collaboration of the Museum Director, N. Kaltsas, H. Mangou, M. Zafeiropoulou (who catalogued the fragments, revealing fragment F and several smaller fragments), G. Makris and many other contributing staff. The X-ray data were gathered by a team from X-Tek Systems (UK)/Metris (NL), led by R. Hadland, and we particularly thank A. Ramsey and A. Ray. We appreciate the support of C. Reinhart of Volume Graphics. We thank the team from Hewlett-Packard (US), led by T. Malzbender, who carried out the surface imaging. We are indebted to N. Economou (deceased), H. Kritzas, E. Georgoudakis and M. Anastasiou. We thank F. Espenak of NASA/GSFC for all the modern eclipse data and predictions. The J. F. Costopoulos Foundation partly funded T.F. and the National Bank of Greece partly funded Y.B. J.M.S. was supported by a Royal Society University Research Fellowship.

Author Contributions T.F. and A.J. carried out the CT analysis of the inscriptions and A.J. provided most of the interpretation and historical analysis, with input from Y.B. A.J. identified the excluded days on the Metonic dial, the Olympiad dial and the index letters in the glyphs. T.F. proposed how the Olympiad dial was turned. J.S., T.F. and A.J. contributed ideas about the glyphs and T.F. carried out the analysis of glyph sequence generation and glyph times and explained why the Saros dial has four turns. J.S. identified the role of the Exeligmos dial. All the authors contributed to the written manuscript. T.F collated and condensed the text and designed the illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Freeth.

Supplementary information

Supplementary information

The file contains Supplementary Notes, including Supplementary Figures 1-25 with Legends and additional references. Supplementary Figs 20 and 25 were amended on 02 June 2011. (PDF 3076 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freeth, T., Jones, A., Steele, J. et al. Calendars with Olympiad display and eclipse prediction on the Antikythera Mechanism. Nature 454, 614–617 (2008). https://doi.org/10.1038/nature07130

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07130

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing