Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Coherent manipulation of single spins in semiconductors

Abstract

During the past few years, researchers have gained unprecedented control over spins in the solid state. What was considered almost impossible a decade ago, in both conceptual and practical terms, is now a reality: single spins can be isolated, initialized, coherently manipulated and read out using both electrical and optical techniques. Progress has been made towards full control of the quantum states of single and coupled spins in a variety of semiconductors and nanostructures, and towards understanding the mechanisms through which spins lose coherence in these systems. These abilities will allow pioneering investigations of fundamental quantum-mechanical processes and provide pathways towards applications in quantum information processing.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Single-spin systems.
Figure 2: Single-spin read-out.
Figure 3: Spin decoherence in quantum dots.
Figure 4: Control and coherence in diamond.

References

  1. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

    Article  CAS  ADS  Google Scholar 

  2. Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998).

    Article  CAS  ADS  Google Scholar 

  3. DiVincenzo, D. P. The physical implementation of quantum computation. Fortschr. Phys. 48, 771–783 (2000).

    Article  Google Scholar 

  4. Wolf, S. A. et al. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    Article  CAS  ADS  Google Scholar 

  5. Kastner, M. A. Artificial atoms. Phys. Today 46, 24–31 (1993).

    Article  CAS  ADS  Google Scholar 

  6. Ashoori, R. C. Electrons in artificial atoms. Nature 379, 413–419 (1996).

    Article  CAS  ADS  Google Scholar 

  7. Kouwenhoven, L. P. & Marcus, C. M. Quantum dots. Phys. World 11, 35–39 (1998).

    Article  CAS  Google Scholar 

  8. Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007).

    Article  CAS  ADS  Google Scholar 

  9. Zrenner, A. et al. Coherent properties of a two-level system based on a quantum-dot photodiode. Nature 418, 612–614 (2002).

    Article  CAS  ADS  Google Scholar 

  10. Kouwenhoven, L. P., Austing, D. G. & Tarucha, S. Few-electron quantum dots. Rep. Prog. Phys. 64, 701–736 (2001).

    Article  CAS  ADS  Google Scholar 

  11. Fujisawa, T., Austing, D. G., Tokura, Y., Hirayama, Y. & Tarucha, S. Allowed and forbidden transitions in artificial hydrogen and helium atoms. Nature 419, 278–281 (2002).

    Article  CAS  ADS  Google Scholar 

  12. Hayashi, T., Fujisawa, T., Cheong, H. D., Jeong, Y. H. & Hirayama, Y. Coherent manipulation of electronic states in a double quantum dot. Phys. Rev. Lett. 91, 226804 (2003).

    Article  CAS  ADS  Google Scholar 

  13. Khaetskii, A. V., Loss, D. & Glazman, L. Electron spin decoherence in quantum dots due to interaction with nuclei. Phys. Rev. Lett. 88, 186802 (2002).

    Article  ADS  Google Scholar 

  14. Merkulov, I. A., Efros, A. L. & Rosen, J. Electron spin relaxation by nuclei in semiconductor quantum dots. Phys. Rev. B 65, 205309 (2002).

    Article  ADS  Google Scholar 

  15. Golovach, V. N., Khaetskii, A. & Loss, D. Phonon-induced decay of the electron spin in quantum dots. Phys. Rev. Lett. 93, 016601 (2004).

  16. Elzerman, J. M. et al. Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431–435 (2004).

    Article  CAS  ADS  Google Scholar 

  17. Hanson, R. et al. Single-shot readout of electron spin states in a quantum dot using spin-dependent tunnel rates. Phys. Rev. Lett. 94, 196802 (2005).

    Article  CAS  ADS  Google Scholar 

  18. Amasha, S. et al. Electrical control of spin relaxation in a quantum dot. Phys. Rev. Lett. 100, 046803-1-4 (2008).

    Article  ADS  Google Scholar 

  19. Levy, J. Universal quantum computation with spin-1/2 pairs and Heisenberg exchange. Phys. Rev. Lett. 89, 147902 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  20. Taylor, J. M. et al. Fault-tolerant architecture for quantum computation using electrically controlled semiconductor spins. Nature Phys. 1, 177–183 (2005).

    Article  CAS  ADS  Google Scholar 

  21. Hanson, R. & Burkard, G. Universal set of quantum gates for double-dot spin qubits with fixed interdot coupling. Phys. Rev. Lett. 98, 050502 (2007).

    Article  ADS  Google Scholar 

  22. DiVincenzo, D. P., Bacon, D.P., Kempe, J., Burkard, G. & Whaley, K. B. Universal quantum computation with the exchange interaction. Nature 408, 339–342 (2000).

  23. Ono, K., Austing, D. G., Tokura, Y. & Tarucha, S. Current rectification by Pauli exclusion in a weakly coupled double quantum dot system. Science 297, 1313–1317 (2002).

    Article  CAS  ADS  Google Scholar 

  24. Johnson, A. C. et al. Triplet–singlet spin relaxation via nuclei in a double quantum dot. Nature 435, 925–928 (2005).

    Article  CAS  ADS  Google Scholar 

  25. Koppens, F. et al. Control and detection of singlet–triplet mixing in a random nuclear field. Science 309, 1346–1350 (2005).

    Article  CAS  ADS  Google Scholar 

  26. Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    Article  CAS  ADS  Google Scholar 

  27. Koppens, F. H. L. et al. Driven coherent oscillations of a single electron spin in a quantum dot. Nature 442, 766–771 (2006).

    Article  CAS  ADS  Google Scholar 

  28. Kato, Y. et al. Gigahertz electron spin manipulation using voltage controlled g-tensor modulation. Science 299, 1201–1204 (2003).

    Article  CAS  ADS  Google Scholar 

  29. Laird, E. A. et al. Hyperfine-mediated gate-driven electron spin resonance. Phys. Rev. Lett. 99, 246601 (2007).

    Article  CAS  ADS  Google Scholar 

  30. Pioro-Ladriere, M. et al. Electrically driven single-electron spin resonance in a slanting Zeeman field. Preprint at <http://arxiv.org/abs/0805.1083> (2008).

  31. Nowack, K. C., Koppens, F. H. L., Nazarov, Y. V. & Vandersypen, L. M. K. Coherent control of a single electron spin with electric fields. Science 318, 1430–1433 (2007).

    Article  CAS  ADS  Google Scholar 

  32. Awschalom, D. D. & Kikkawa, J. M. Electron spin and optical coherence in semiconductors. Phys. Today 52, 33–38 (1999).

    Article  CAS  Google Scholar 

  33. Kroutvar, M. et al. Optically programmable electron spin memory using semiconductor quantum dots. Nature 432, 81–84 (2004).

    Article  CAS  ADS  Google Scholar 

  34. Heiss, D. et al. Observation of extremely slow hole spin relaxation in self-assembled quantum dots. Phys. Rev. B 76, 241306 (2007).

    Article  ADS  Google Scholar 

  35. Bulaev, D. V. & Loss, D. Spin relaxation and decoherence of holes in quantum dots. Phys. Rev. Lett. 95, 076805 (2005).

    Article  ADS  Google Scholar 

  36. Berezovsky, J. et al. Nondestructive optical measurements of a single electron spin in a quantum dot. Science 314, 1916–1920 (2006).

    Article  CAS  ADS  Google Scholar 

  37. Atature, M., Dreiser, J., Badolato, A. & Imamoglu, A. Observation of Faraday rotation from a single confined spin. Nature Phys. 3, 101–106 (2007).

    Article  CAS  ADS  Google Scholar 

  38. Mikkelsen, M. H., Berezovsky, J., Stoltz, N. G., Coldren, L. A. & Awschalom, D. D. Optically detected coherent spin dynamics of a single electron in a quantum dot. Nature Phys. 3, 770–773 (2007).

    Article  CAS  ADS  Google Scholar 

  39. Imamoglu, A. et al. Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204–4207 (1999).

    Article  CAS  ADS  Google Scholar 

  40. Cohen-Tannoudji, C. & Dupont-Roc, J. Experimental study of Zeeman light shifts in weak magnetic fields. Phys. Rev. A 5, 968–984 (1972).

    Article  ADS  Google Scholar 

  41. Berezovsky, J., Mikkelsen, M. H., Stoltz, N. G., Coldren, L. A. & Awschalom, D. D. Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320, 349–352 (2008).

    Article  CAS  ADS  Google Scholar 

  42. Meier, F. & Zakharchenya, B. P. (eds) Optical Orientation (North-Holland, Amsterdam, 1984).

    Google Scholar 

  43. Braun, P. F. et al. Direct observation of the electron spin relaxation induced by nuclei in quantum dots. Phys. Rev. Lett. 94, 116601 (2005).

    Article  ADS  Google Scholar 

  44. Bracker, A. S. et al. Optical pumping of the electronic and nuclear spin of single charge-tunable quantum dots. Phys. Rev. Lett. 94, 047402 (2005).

    Article  CAS  ADS  Google Scholar 

  45. Giedke, G., Taylor, J. M., D'Alessandro, D., Lukin, M. D. & Imamoglu, A. Quantum measurement of a mesoscopic spin ensemble. Phys. Rev. A 74, 032316 (2006).

    Article  ADS  Google Scholar 

  46. Greilich, A. et al. Nuclei-induced frequency focusing of electron spin coherence. Science 317, 1896–1899 (2007).

    Article  CAS  ADS  Google Scholar 

  47. Stepanenko, D., Burkard, G., Giedke, G. & Imamoglu, A. Enhancement of electron spin coherence by optical preparation of nuclear spins. Phys. Rev. Lett. 96, 136401 (2006).

    Article  ADS  Google Scholar 

  48. Klauser, D., Coish, W. A. & Loss, D. Nuclear spin state narrowing via gate-controlled Rabi oscillations in a double quantum dot. Phys. Rev. B 73, 205302 (2006).

    Article  ADS  Google Scholar 

  49. Baugh, J., Kitamura, Y., Ono, K. & Tarucha, S. Large nuclear Overhauser fields detected in vertically coupled double quantum dots. Phys. Rev. Lett. 99, 096804 (2007).

    Article  ADS  Google Scholar 

  50. Coish, W. A. & Loss, D. Hyperfine interaction in a quantum dot: Non-Markovian electron spin dynamics. Phys. Rev. B 70, 195340 (2004).

    Article  ADS  Google Scholar 

  51. Gerardot, B. D. et al. Optical pumping of a single hole spin in a quantum dot. Nature 451, 441–444 (2008).

    Article  CAS  ADS  Google Scholar 

  52. Atatüre, M. et al. Quantum-dot spin-state preparation with near-unity fidelity. Science 312, 551–553 (2006).

    Article  ADS  Google Scholar 

  53. Mason, N., Biercuk, M. J. & Marcus, C. M. Local gate control of a carbon nanotube double quantum dot. Science 303, 655–658 (2004).

    Article  CAS  ADS  Google Scholar 

  54. Sapmaz, S., Meyer, C., Beliczynski, P. M., Jarillo-Herrero, P. D. & Kouwenhoven, L. P. Excited state spectroscopy in carbon nanotube double quantum dots. Nano Lett. 6, 1350–1355 (2006).

    Article  CAS  ADS  Google Scholar 

  55. Hu, Y. et al. Double quantum dot with integrated charge sensor based on Ge/Si heterostructure nanowires. Nature Nanotech. 2, 622–625 (2007).

    Article  CAS  ADS  Google Scholar 

  56. Simmons, C. B. et al. Single-electron quantum dot in Si/SiGe with integrated charge sensing. Appl. Phys. Lett. 91, 213103 (2007).

    Article  ADS  Google Scholar 

  57. Liu, H. W. et al. Pauli-spin-blockade transport through a silicon double quantum dot. Phys. Rev. B 77, 073310 (2008).

    Article  ADS  Google Scholar 

  58. Besombes, L. et al. Probing the spin state of a single magnetic ion in an individual quantum dot. Phys. Rev. Lett. 93, 207403 (2004).

    Article  CAS  ADS  Google Scholar 

  59. Léger, Y., Besombes, L., Fernández-Rossier, J., Maingault, L. & Mariette, H. Electrical control of a single Mn atom in a quantum dot. Phys. Rev. Lett. 97, 107401 (2006).

    Article  ADS  Google Scholar 

  60. Erwin, S. C. Nanomagnetism: spin doctors play with single electrons. Nature Nanotech. 1, 98–99 (2006).

    Article  CAS  ADS  Google Scholar 

  61. Myers, R. C. et al. Zero-field optical manipulation of magnetic ions in semiconductors. Nature Mater. 7, 203–208 (2008).

    Article  CAS  ADS  Google Scholar 

  62. Awschalom, D. D., Epstein, R. & Hanson, R. The diamond age of spintronics. Sci. Am. 297, 84–91 (2007).

  63. Reynhardt, E. C., High, G. L. & vanWyk, J. A. Temperature dependence of spin–spin and spin–lattice relaxation times of paramagnetic nitrogen defects in diamond. J. Chem. Phys. 109, 84718477 (1998).

    Google Scholar 

  64. Gruber, A. et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276, 2012–2014 (1997).

    Article  CAS  Google Scholar 

  65. Jelezko, F., Popa, I., Gruber, A. & Wrachtrup, J. Single spin states in a defect center resolved by optical spectroscopy. Appl. Phys. Lett. 81, 2160–2162 (2002).

    Article  CAS  ADS  Google Scholar 

  66. Jelezko, F., Gaebel, T., Popa, I., Gruber, A. & Wrachtrup, J. Observation of coherent oscillations in a single electron spin. Phys. Rev. Lett. 92, 76401 (2004).

    Article  CAS  ADS  Google Scholar 

  67. Jelezko, F. et al. Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys. Rev. Lett. 93, 130501 (2004).

    Article  CAS  ADS  Google Scholar 

  68. Rabeau, J. R. et al. Single nitrogen vacancy centers in chemical vapor deposited diamond nanocrystals. Nano Lett. 7, 3433–3437 (2007).

    Article  CAS  ADS  Google Scholar 

  69. Park, Y.-S., Cook, A. K. & Wang, H. Cavity QED with Diamond nanocrystals and silica microspheres. Nano Lett. 6, 2075–2079 (2006).

    Article  CAS  ADS  Google Scholar 

  70. Kennedy, T. A. et al. Long coherence times at 300 K for nitrogen–vacancy center spins in diamond grown by chemical vapor deposition. Appl. Phys. Lett. 83, 4190–4192 (2003).

    Article  CAS  ADS  Google Scholar 

  71. Gaebel, T. et al. Room-temperature coherent coupling of single spins in diamond. Nature Phys. 2, 408–413 (2006).

    Article  CAS  ADS  Google Scholar 

  72. Hanson, R., Mendoza, F. M., Epstein, R. J. & Awschalom, D. D. Polarization and readout of coupled single spins in diamond. Phys. Rev. Lett. 97, 087601 (2006).

    Article  CAS  ADS  Google Scholar 

  73. Hanson, R., Dobrovitski, V. V., Feiguin, A. E., Gywat, O. & Awschalom, D. D. Coherent dynamics of a single spin interacting with an adjustable spin bath. Science 320, 352–355 (2008).

    Article  CAS  ADS  Google Scholar 

  74. Takahashi, S., Hanson, R., van Tol, J., Sherwin, M. S. & Awschalom, D. D. Quenching spin decoherence in diamond through spin bath polarization. Preprint at <http://arxiv.org/abs/0804.1537> (2008).

  75. Meijer, J. et al. Generation of single colour centers by focussed nitrogen implantation. Appl. Phys. Lett. 87, 261909 (2005).

    Article  ADS  Google Scholar 

  76. Rabeau, J. R. et al. Implantation of labelled single nitrogen vacancy centers in diamond using 15N. Appl. Phys. Lett. 88, 023113 (2006).

    Article  ADS  Google Scholar 

  77. Childress, L. et al. Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314, 281–285 (2006).

    Article  CAS  ADS  Google Scholar 

  78. Dutt, M. V. G. et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007).

    Article  Google Scholar 

  79. Tamarat, P. et al. Stark shift control of single optical centers in diamond. Phys. Rev. Lett. 97, 083002 (2006).

    Article  ADS  Google Scholar 

  80. Santori, C. et al. Coherent population trapping of single spins in diamond under optical excitation. Phys. Rev. Lett. 97, 247401 (2006).

    Article  ADS  Google Scholar 

  81. Barrett, S. D. & Kok, P. Efficient high-fidelity quantum computation using matter qubits and linear optics. Phys. Rev. A 71, 060310 (2005).

    Article  ADS  Google Scholar 

  82. Moehring, D. L. et al. Entanglement of single-atom quantum bits at a distance. Nature 449, 68–72 (2007).

    Article  CAS  ADS  Google Scholar 

  83. Averin, D. V. & Nazarov, Y. V. Virtual electron diffusion during quantum tunnelling of the electric charge. Phys. Rev. Lett. 65, 2446–2449 (1990).

    Article  CAS  ADS  Google Scholar 

  84. Coish, W. A. & Loss, D. Singlet–triplet decoherence due to nuclear spins in a double quantum dot. Phys. Rev. B 72, 25337 (2005).

    Article  ADS  Google Scholar 

  85. Hu, X. & Das Sarma, S. Charge-fluctuation-induced dephasing of exchange-coupled spin qubits. Phys. Rev. Lett. 96, 100501 (2006).

    Article  ADS  Google Scholar 

  86. Jung, S. W., Fujisawa, T., Hirayama, Y. & Jeong, Y. H. Background charge fluctuation in a GaAs quantum dot device. Appl. Phys. Lett. 85, 768–770 (2004).

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

We thank the Air Force Office of Scientific Research (AFOSR), the Dutch Organization for Fundamental Research on Matter (FOM) and the Netherlands Organization for Scientific Research (NWO) for support.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Correspondence should be addressed to the authors (r.hanson@tudelft.nl; awsch@physics.ucsb.edu).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hanson, R., Awschalom, D. Coherent manipulation of single spins in semiconductors. Nature 453, 1043–1049 (2008). https://doi.org/10.1038/nature07129

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07129

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing