Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Superconducting quantum bits

Abstract

Superconducting circuits are macroscopic in size but have generic quantum properties such as quantized energy levels, superposition of states, and entanglement, all of which are more commonly associated with atoms. Superconducting quantum bits (qubits) form the key component of these circuits. Their quantum state is manipulated by using electromagnetic pulses to control the magnetic flux, the electric charge or the phase difference across a Josephson junction (a device with nonlinear inductance and no energy dissipation). As such, superconducting qubits are not only of considerable fundamental interest but also might ultimately form the primitive building blocks of quantum computers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The theory underlying flux qubits.
Figure 2: Experimental properties of flux qubits.
Figure 3: Charge qubits.
Figure 4: Quantronium.
Figure 5: Phase qubits.
Figure 6: Qubit manipulation in the time domain.
Figure 7: Controllably coupled flux qubits.
Figure 8: Circuit QED.

Similar content being viewed by others

References

  1. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957).

    Article  CAS  ADS  MathSciNet  Google Scholar 

  2. Tinkham, M. Introduction to Superconductivity (McGraw-Hill, New York, 1996).

    Google Scholar 

  3. Devoret, M. H. in Quantum Fluctuations: Les Houches Session LXIII (eds Reynaud, S., Giacobino, E. & David, F.) 351–386 (Elsevier, Amsterdam, 1997).

    Google Scholar 

  4. Voss, R. F. & Webb, R. A. Macroscopic quantum tunneling in 1-µm Nb Josephson junctions. Phys. Rev. Lett. 47, 265–268 (1981).

    Article  CAS  ADS  Google Scholar 

  5. Devoret, M. H., Martinis, J. M. & Clarke, J. Measurements of macroscopic quantum tunneling out of the zero-voltage state of a current-biased Josephson junction. Phys. Rev. Lett. 55, 1908–1911 (1985).

    Article  CAS  ADS  Google Scholar 

  6. Caldeira, A. O. & Leggett, A. J. Quantum tunneling in a dissipative system. Ann. Phys. (NY) 149, 374–456 (1983).

    Article  ADS  Google Scholar 

  7. Martinis, J. M., Devoret, M. H. & Clarke, J. Energy-level quantization in the zero-voltage state of a current-biased Josephson junction. Phys. Rev. Lett. 55, 1543–1546 (1985).

    Article  CAS  ADS  Google Scholar 

  8. Leggett, A. J. in Chance and Matter: Les Houches Session XLVI (eds Souletie, J., Vannimenus, J. & Stora, R.) 395–506 (Elsevier, Amsterdam, 1987).

    Google Scholar 

  9. Nakamura, Y., Chen, C. D. & Tsai, J. S. Spectroscopy of energy-level splitting between two macroscopic quantum states of charge coherently superposed by Josephson coupling. Phys. Rev. Lett. 79, 2328–2331 (1997).

    Article  CAS  ADS  Google Scholar 

  10. Friedman, J. R., Patel, V., Chen, W., Tolpygo, S. K. & Lukens, J. E. Quantum superpositions of distinct macroscopic states. Nature 406, 43–46 (2000).

    Article  CAS  ADS  Google Scholar 

  11. van der Wal, C. H. et al. Quantum superpositions of macroscopic persistent current. Science 290, 773–776 (2000).

    Article  CAS  ADS  Google Scholar 

  12. Vion, D. et al. Manipulating the quantum state of an electrical circuit. Science 296, 886–889 (2002).

    Article  CAS  ADS  Google Scholar 

  13. Martinis, J. M., Nam, S., Aumentado, J. & Urbina, C. Rabi oscillations in a large Josephson-junction qubit. Phys. Rev. Lett. 89, 117901 (2002).

    Article  ADS  Google Scholar 

  14. The SQUID Handbook: Fundamentals and Technology of SQUIDs and SQUID Systems Vol. I (eds Clarke, J. & Braginski, A. I.) (Wiley, Weinheim, 2004).

  15. Wilhelm, F. K. et al. Macroscopic quantum superposition of current states in a Josephson junction loop. Usp. Fiz. Nauk 44 (suppl. 171), 117–121 (2001).

    Google Scholar 

  16. Devoret, M. H. & Schoelkopf, R., Amplifying quantum signals with the single-electron transistor. Nature 406, 1039–1046 (2000).

    Article  CAS  Google Scholar 

  17. Schoelkopf, R. J., Wahlgren, P., Kozhevnikov, A. A., Delsing, P. & Prober, D. E. The radio-frequency single-electron transistor (RF-SET): a fast and ultrasensitive electrometer. Science 280, 1238–1242 (1998).

    Article  CAS  ADS  Google Scholar 

  18. Bouchiat, V., Vion, D., Joyez, P., Esteve, D. & Devoret, M. H. Quantum coherence with a single Cooper pair. Physica Scripta T76, 165–170 (1998).

    Article  CAS  ADS  Google Scholar 

  19. Nakamura, Y., Pashkin, Y. A. & Tsai, J. S., Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398, 786–788 (1999).

    Article  CAS  ADS  Google Scholar 

  20. Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).

    Article  ADS  Google Scholar 

  21. Ithier, G. et al. Decoherence in a superconducting quantum bit circuit Phys. Rev. B 72, 134519 (2005).

    Article  ADS  Google Scholar 

  22. Siddiqi, I. et al. Direct observation of dynamical bifurcation between two driven oscillation states of a Josephson junction. Phys. Rev. Lett. 94, 027005 (2005).

    Article  CAS  ADS  Google Scholar 

  23. Braginsky, V. B., Khalili, F. Y. & Thorne, K. S. Quantum Measurement (Cambridge Univ. Press, Cambridge, UK, 1995).

    Google Scholar 

  24. Lupas¸ cu, A. et al. Quantum non-demolition measurement of a superconducting two-level system. Nature Phys. 3, 119–125 (2007).

    Article  ADS  Google Scholar 

  25. Grajcar, M. et al. Low-frequency measurement of the tunneling amplitude in a flux qubit. Phys. Rev. B 69, 060501 (2004).

    Article  ADS  Google Scholar 

  26. Cooper, K. B. et al. Observation of quantum oscillations between a Josephson phase qubit and a microscopic resonator using fast readout. Phys. Rev. Lett. 93, 180401 (2004).

    Article  CAS  ADS  Google Scholar 

  27. Slichter C. P. Principles of Nuclear Magnetic Resonance 3rd edn (Springer, New York, 1990).

    Book  Google Scholar 

  28. Makhlin, Y., Schön, G. & Shnirman, A. Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357–400 (2001).

    Article  ADS  Google Scholar 

  29. Wilhelm, F. K., Hartmann, U., Storcz, M. J. & Geller, M. R. in Manipulating Quantum Coherence in Solid State Systems (eds Flatté, M. E. & Tifrea, I.) 195–233 (Springer, Dordrecht, 2007).

    Book  Google Scholar 

  30. Ramsey, N. F. A molecular beam resonance method with separated oscillating fields. Phys. Rev. 78, 695–699 (1950).

    Article  CAS  ADS  Google Scholar 

  31. Steffen, M. et al. State tomography of capacitively shunted phase qubits with high fidelity. Phys. Rev. Lett. 97, 050502 (2006).

    Article  ADS  Google Scholar 

  32. Dutta, P. & Horn, P. M. Low frequency fluctuations in solids: 1/f noise. Rev. Mod. Phys. 53, 497–516 (1981).

    Article  CAS  ADS  Google Scholar 

  33. van Harlingen, D. J. et al. Decoherence in Josephson-junction qubits due to critical-current fluctuations. Phys. Rev. B 70, 064517 (2004).

    Article  ADS  Google Scholar 

  34. Wellstood, F. C., Urbina, C. & Clarke, J. Low-frequency noise in dc superconducting quantum interference devices below 1 K. Appl. Phys. Lett. 50, 772–774 (1987).

    CAS  Google Scholar 

  35. Koch, R. H., DiVincenzo, D. P. & Clarke, J. Model for 1/f flux noise in SQUIDs and qubits. Phys. Rev. Lett. 98, 267003 (2007).

    Article  ADS  Google Scholar 

  36. Faoro, L. & Ioffe, L. B. Microscopic origin of low-frequency flux noise in Josephson circuits. Preprint at <http://arxiv.org/abs/0712.2834> (2007).

  37. Simmonds, R. W., Lang, K. M., Hite, D. A., Pappas, D. P. & Martinis, J. M. Decoherence in Josephson qubits from junction resonances. Phys. Rev. Lett. 93, 077033 (2004).

    Article  ADS  Google Scholar 

  38. Martinis, J. M. et al. Decoherence in Josephson qubits from dielectric loss. Phys. Rev. Lett. 95, 210503 (2005).

    Article  ADS  Google Scholar 

  39. Nakamura, Y., Pashkin, Y. A., Yamamoto, T. & Tsai, J. S. Charge echo in a Cooper-pair box. Phys. Rev. Lett. 88, 047901 (2002).

    Article  CAS  ADS  Google Scholar 

  40. Bertet, P. et al. Relaxation and dephasing in a flux-qubit. Phys. Rev. Lett. 95, 257002 (2005).

    Article  CAS  ADS  Google Scholar 

  41. Astafiev, O., Pashkin, Y. A., Nakamura, Y., Yamamoto, T. & Tsai, J. S. Quantum noise in the Josephson charge qubit. Phys. Rev. Lett. 93, 267007 (2004).

    Article  CAS  ADS  Google Scholar 

  42. Berkley, A.J. et al. Entangled macroscopic quantum states in two superconducting qubits. Science 300, 1548–1550 (2003).

    Article  CAS  ADS  Google Scholar 

  43. Majer, J. B., Paauw, F. G., ter Haar, A. C. J., Harmans, C. J. P. M. & Mooij, J. E. Spectroscopy of coupled flux qubits. Phys. Rev. Lett. 94, 090501 (2005).

    Article  CAS  ADS  Google Scholar 

  44. Pashkin, Y. A. et al. Quantum oscillations in two coupled charge qubits. Nature 421, 823–826 (2003).

    Article  CAS  ADS  Google Scholar 

  45. McDermott, R. et al. Simultaneous state measurement of coupled Josephson phase qubits. Science 307, 1299–1302 (2005).

    Article  CAS  ADS  Google Scholar 

  46. Steffen, M. et al. Measurement of the entanglement of two superconducting qubits via state tomography. Science 313, 1423–1425 (2006).

    Article  CAS  ADS  MathSciNet  Google Scholar 

  47. Yamamoto, Y., Pashkin, Y. A., Astafiev, O., Nakamura, Y. & Tsai, J. S. Demonstration of conditional gate operation using superconducting charge qubits. Nature 425, 941–944 (2003).

    Article  CAS  ADS  Google Scholar 

  48. Plantenberg, J. H., de Groot, P. C., Harmans, C. J. & Mooij, J. E. Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits. Nature 447, 836–839 (2007).

    Article  CAS  ADS  Google Scholar 

  49. Plourde, B. L. T. et al. Entangling flux qubits with a bipolar dynamic inductance. Phys. Rev. B 70, 140501 (2004).

  50. Hime, T. et al. Solid-state qubits with current-controlled coupling. Science 314, 1427–1429 (2006).

    Article  CAS  ADS  Google Scholar 

  51. Niskanen, A. O. et al. Quantum coherent tunable coupling of superconducting qubits. Science 316, 723–726 (2007).

    Article  CAS  ADS  Google Scholar 

  52. Averin, D. V. & Bruder, C. Variable electrostatic transformer controllable coupling of two charge qubits. Phys. Rev. Lett. 91, 057003 (2003).

    Article  CAS  ADS  Google Scholar 

  53. Bertet, P., Harmans, C. J. P.M. & Mooij, J. E. Parametic coupling for superconducting qubits. Phys. Rev. B 73, 064512 (2006).

    Article  ADS  Google Scholar 

  54. Rigetti, C., Blais, A. & Devoret, M. Protocol for universal gates in optimally biased superconducting qubits. Phys. Rev. Lett. 94, 240502 (2005).

    Article  ADS  Google Scholar 

  55. Liu, Y.-x., Wei, L. F., Tsai, J. S. & Nori, F. Controllable coupling between flux qubits. Phys. Rev. Lett. 96, 067003 (2006).

    Article  ADS  Google Scholar 

  56. Makhlin, Y., Schön, G. & Shnirman, A. Josephson-junction qubits with controlled couplings. Nature 398, 305–307 (1999).

    Article  CAS  ADS  Google Scholar 

  57. Wei, L. F., Liu, Y.-x. & Nori, F. Quantum computation with Josephson qubits using a current-biased information bus. Phys. Rev. B 71, 134506 (2005).

    Article  ADS  Google Scholar 

  58. Lantz, J., Wallquist, M., Shumeiko, V. S. & Wendin, G. Josephson junction qubit network with current-controlled interaction. Phys. Rev. B 70, 140507 (2004).

    Article  ADS  Google Scholar 

  59. Blais, A., Huang, R.-S., Wallraff, A., Girvin, S. M. & Schoelkopf, R. J. Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004).

    Article  ADS  Google Scholar 

  60. Helmer, F. et al. Two-dimensional cavity grid for scalable quantum computation with superconducting circuits. Preprint at <http://arxiv.org/abs/0706.3625> (2007).

  61. Majer, J. B. et al. Coupling superconducting qubits via a cavity bus. Nature 449, 443–447 (2007).

    Article  CAS  ADS  Google Scholar 

  62. Sillanpaa, M. A., Park, J. I. & Simmonds, R. W. Coherent quantum state storage and transfer between two phase qubits via a resonant cavity. Nature 449, 438–442 (2007).

    Article  ADS  Google Scholar 

  63. Fowler, A. G. et al. Long-range coupling and scalable architecture for superconducting flux qubits. Phys. Rev. B 76, 174507 (2007).

    Article  ADS  Google Scholar 

  64. Grajcar, M. et al. Four-qubit device with mixed couplings. Phys. Rev. Lett. 96, 047006 (2006).

    Article  CAS  ADS  Google Scholar 

  65. Devoret, M. H. et al. in Quantum Tunneling in Condensed Media (eds Kagan, Y. & Leggett, A. J.) 313–345 (Elsevier, Amsterdam, 1992).

    Book  Google Scholar 

  66. Haroche, S. & Kleppner, D. Cavity quantum electrodynamics. Phys. Today 42, 24–26 (1989).

    Article  CAS  ADS  Google Scholar 

  67. Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004).

    Article  CAS  ADS  Google Scholar 

  68. Johansson, J. et al. Vacuum Rabi oscillations in a macroscopic superconducting qubit LC oscillator system. Phys. Rev. Lett. 96, 127006 (2006).

    Article  CAS  ADS  Google Scholar 

  69. Schuster, D. I. et al. Resolving photon number states in a superconducting circuit. Nature 445, 515–518 (2007).

    Article  CAS  ADS  Google Scholar 

  70. Houck, A. A. et al. Generating single microwave photons in a circuit. Nature 449, 443–447 (2007).

    Article  ADS  Google Scholar 

  71. Astafiev, O. et al. Single artificial-atom lasing. Nature 449, 588–590 (2007).

    Article  CAS  ADS  Google Scholar 

  72. Valenzuela, S. O. et al. Microwave-induced cooling of a superconducting qubit. Science 314, 1589–1592 (2006).

    Article  CAS  ADS  Google Scholar 

  73. Gracjar, M. et al. Sisyphus damping and amplification by a superconducting qubit. Preprint at <http://arxiv.org/abs/0708.0665> (2007).

  74. Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969).

    Article  ADS  Google Scholar 

  75. Leggett, A. J. & Garg, A. Quantum mechanics versus macroscopic realism: is the flux there when nobody looks? Phys. Rev. Lett. 54, 857–860 (1985).

    Article  CAS  ADS  MathSciNet  Google Scholar 

  76. Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70 1895–1899 (1993).

    Article  CAS  ADS  MathSciNet  Google Scholar 

  77. Schreier, J. A. et al. Suppressing charge noise decoherence in superconducting charge qubits. Phys. Rev. B 77, 180502 (2008).

    Article  ADS  Google Scholar 

  78. Duty, T., Gunnarson, D., Bladh, K. & Delsing, P. Coherent dynamics of a Josephson charge qubit. Phys. Rev. B 69, 140503 (2004).

    Article  ADS  Google Scholar 

  79. Dolan, G. J. Offset masks for liftoff photoprocessing. Appl. Phys. Lett. 31, 337–339 (1977).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Our work is supported by the US Department of Energy (Division of Materials Sciences and Engineering, in the Office of Basic Energy Sciences) (J.C.), and by the Natural Sciences and Engineering Research Council of Canada, QuantumWorks and EuroSQIP (F.K.W.).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Correspondence should be addressed to authors (jclarke@berkeley.edu; fwilhelm@iqc.ca).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, J., Wilhelm, F. Superconducting quantum bits. Nature 453, 1031–1042 (2008). https://doi.org/10.1038/nature07128

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07128

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing