Review Article | Published:

The quantum internet

Nature volume 453, pages 10231030 (19 June 2008) | Download Citation

Subjects

Abstract

Quantum networks provide opportunities and challenges across a range of intellectual and technical frontiers, including quantum computation, communication and metrology. The realization of quantum networks composed of many nodes and channels requires new scientific capabilities for generating and characterizing quantum coherence and entanglement. Fundamental to this endeavour are quantum interconnects, which convert quantum states from one physical system to those of another in a reversible manner. Such quantum connectivity in networks can be achieved by the optical interactions of single photons and atoms, allowing the distribution of entanglement across the network and the teleportation of quantum states between nodes.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, UK, 2000).

  2. 2.

    et al. Quantum information processing and communication. Strategic report on current status, visions and goals for research in Europe. Eur. Phys. J. D 36, 203–228 (2005).

  3. 3.

    , & Quantum cryptography. Sci. Am. 267 (4), 50–57 (1992).

  4. 4.

    , & (eds) The Physics of Quantum Information (Springer, Berlin, 2000).

  5. 5.

    , & Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004).

  6. 6.

    , , & Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).

  7. 7.

    Plug-in quantum software. Nature 402, 357–358 (1999).

  8. 8.

    et al. Toward a scalable, silicon-based quantum computing architecture. IEEE J. Quantum Electron. 9, 1552–1569 (2003).

  9. 9.

    Light does matter. Nature Phys. 2, 803–804 (2006).

  10. 10.

    , & Robust quantum gates on neutral atoms with cavity-assisted photon scattering. Phys. Rev. A 72, 032333 (2005).

  11. 11.

    , & , Entanglement percolation in quantum networks. Nature Phys. 3, 256–259 (2007).

  12. 12.

    et al. Trapped atoms in cavity QED: coupling quantized light and matter. J. Phys. B. 38, S551–S565 (2005).

  13. 13.

    , , & Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

  14. 14.

    , , & Synthesis of arbitrary quantum states via adiabatic transfer of Zeeman coherence. Phys. Rev. Lett. 71, 3095–3098 (1993).

  15. 15.

    , & Photonic channels for quantum communication. Science 279, 205–208 (1998).

  16. 16.

    Trapping and manipulating photon states in atomic ensembles. Rev. Mod. Phys. 75, 457–472 (2003).

  17. 17.

    , , & Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

  18. 18.

    , , , & Reversible state transfer between light and a single trapped atom. Phys. Rev. Lett. 98, 193601 (2007).

  19. 19.

    , , & Mapping photonic entanglement into and out of a quantum memory. Nature 452, 67–71 (2008).

  20. 20.

    (ed.) Cavity Quantum Electrodynamics (Academic, San Diego, 1994).

  21. 21.

    , , & Single-atom single-photon quantum interface. Science 317, 488–490 (2007).

  22. 22.

    Quantum optics of single atoms. Fortschr. Phys. 52, 1154–1164 (2004).

  23. 23.

    , & One-atom maser. Phys. Rev. Lett. 54, 551–554 (1985).

  24. 24.

    et al. Probing a quantum field in a photon box. J. Phys. B 38, S535–S550 (2005).

  25. 25.

    et al. Progressive field-state collapse and quantum non-demolition photon counting. Nature 448, 889–893 (2007).

  26. 26.

    Optical microcavities. Nature 424, 839–846 (2004).

  27. 27.

    , , , & Vacuum Rabi splitting in semiconductors. Nature Phys. 2, 81–90 (2006).

  28. 28.

    & Wiring up quantum systems. Nature 451, 664–669 (2008).

  29. 29.

    , & Trapping of single atoms in cavity QED. Phys. Rev. Lett. 83, 4987–4990 (1999).

  30. 30.

    et al. A single-photon server with just one atom. Nature Phys. 3, 253–255 (2007).

  31. 31.

    , , & Deterministic loading of individual atoms to a high-finesse optical cavity. Phys. Rev. Lett. 98, 233601 (2007).

  32. 32.

    , & Quantum state engineering and precision metrology using state-insensitive light traps. Science (in the press).

  33. 33.

    , , , & Cooling to the ground state of axial motion for one atom strongly coupled to an optical cavity. Phys. Rev. Lett. 97, 083602 (2006).

  34. 34.

    , , , & Continuous generation of single photons with controlled waveform in an ion-trap cavity system. Nature 431, 1075–1078 (2004).

  35. 35.

    & Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004).

  36. 36.

    et al. Deterministic generation of single photons from one atom trapped in a cavity. Science 303, 1992–1994 (2004).

  37. 37.

    , & Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys. 70, 1003–1025 (1998).

  38. 38.

    & Single-photon sources. Rep. Prog. Phys. 68, 1129–1179 (2005).

  39. 39.

    & Dynamic generation of maximally entangled photon multiplets by adiabatic passage. Phys. Rev. A 61, 063817 (2000).

  40. 40.

    & Efficient engineering of multiatom entanglement through single-photon detections. Phys. Rev. Lett. 90, 253601 (2003).

  41. 41.

    , & Atom–photon entanglement generation and distribution. Phys. Rev. A 69, 042316 (2004).

  42. 42.

    , , , & Generation and transfer of single photons on a photonic crystal chip. Opt. Express 15, 5550–5558 (2007).

  43. 43.

    , , , & Sequential generation of entangled multiqubit states. Phys. Rev. Lett. 95, 110503 (2005).

  44. 44.

    & Quantum state transfer between motion and light. J. Opt. B 1, 496–504 (1999).

  45. 45.

    , & Experimental long-lived entanglement of two macroscopic objects. Nature 413, 400–403 (2001).

  46. 46.

    et al. Quantum teleportation between light and matter. Nature 443, 557–560 (2006).

  47. 47.

    , & (eds) Quantum Information with Continuous Variables of Atoms and Light (World Scientific, New Jersey, 2007).

  48. 48.

    , , & Quantum theory of spatial and temporal coherence properties of stimulated Raman scattering. Phys. Rev. A 32, 332–344 (1985).

  49. 49.

    et al. Measurement-induced entanglement for excitation stored in remote atomic ensembles. Nature 438, 828–832 (2005).

  50. 50.

    , , , & Heralded entanglement between atomic ensembles: preparation, decoherence, and scaling. Phys. Rev. Lett. 99, 180504 (2007).

  51. 51.

    et al. Towards experimental entanglement connection with atomic ensembles in the single excitation regime. New J. Phys. 9, 207–220 (2007).

  52. 52.

    , & Fast and robust approach to long-distance quantum communication with atomic ensembles. Phys. Rev. A 76, 012301 (2007).

  53. 53.

    et al. Robust and efficient quantum repeaters with atomic ensembles and linear optics. Preprint at 〈〉 (2008).

  54. 54.

    et al. Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles. Nature 423, 731–734 (2003).

  55. 55.

    , , , & Generation of paired photons with controllable waveforms. Phys. Rev. Lett. 94, 183601 (2005).

  56. 56.

    et al. Atomic memory for correlated photon states. Science 301, 196–200 (2003).

  57. 57.

    , , & Single-photon generation from stored excitation in an atomic ensemble. Phys. Rev. Lett. 92, 213601 (2004).

  58. 58.

    et al. Efficient retrieval of a single excitation stored in an atomic ensemble. Opt. Express 14, 6912–6918 (2006).

  59. 59.

    , , & A high-brightness source of narrowband, identical-photon pairs. Science 313, 74–77 (2006).

  60. 60.

    et al. Deterministic single photons via conditional quantum evolution. Phys. Rev. Lett. 97, 013601 (2006).

  61. 61.

    et al. Deterministic and storable single-photon source based on a quantum memory. Phys. Rev. Lett. 97, 173004 (2006).

  62. 62.

    , , & Interfacing collective atomic excitations and single photons. Phys.Rev. Lett. 98, 183601 (2007).

  63. 63.

    Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998).

  64. 64.

    et al. Conditional control of the quantum states of remote atomic memories for quantum networking. Nature Phys. 2, 844–848 (2006).

  65. 65.

    et al. Functional quantum nodes for entanglement distribution over scalable quantum networks. Science 316, 1316–1320 (2007).

  66. 66.

    Electromagnetically induced transparency. Phys. Today 50, 36–40 (1997).

  67. 67.

    , , & Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490–493 (2001).

  68. 68.

    , , , & Storage of light in atomic vapor. Phys. Rev. Lett. 86, 783–786 (2001).

  69. 69.

    et al. Storage and retrieval of single photons transmitted between remote quantum memories. Nature 438, 833–836 (2005).

  70. 70.

    et al. Electromagnetically induced transparency with tunable single-photon pulses. Nature 438, 837–841 (2005).

  71. 71.

    , , & Single-photon bus connecting spin-wave quantum memories. Nature Phys. 3, 765–769 (2007).

  72. 72.

    , & Experimental procedures for entanglement verification. Phys. Rev. A 75, 052318 (2007).

  73. 73.

    et al. Memory-built-in quantum teleportation with photonic and atomic qubits. Nature Phys. 4, 103–107 (2008).

  74. 74.

    , , & Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003).

  75. 75.

    et al. Observation of strong coupling between one atom and a monolithic microresonator. Nature 443, 671–674 (2006).

  76. 76.

    et al. A photon turnstile dynamically regulated by one atom. Science 319, 1062–1065 (2008).

  77. 77.

    et al. Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics. Phys. Rev. A 71, 013817 (2005).

  78. 78.

    et al. Atom detection and photon production in a scalable, open, optical microcavity. Phys. Rev. Lett. 99, 063601 (2007).

  79. 79.

    , & Cavity QED with diamond nanocrystals and silica microspheres. Nano Lett. 6, 2075–2079 (2006).

  80. 80.

    , , & Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003).

  81. 81.

    , , & Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. Phys. Rev. Lett. 91, 043902 (2003).

  82. 82.

    , & Quality-factor and nonlinear properties of optical whispering-gallery modes. Phys. Lett. A 137, 393–397 (1989).

Download references

Acknowledgements

I am grateful for the contributions of members of the Caltech Quantum Optics Group, especially K. S. Choi, B. Dayan and R. Miller. I am indebted to J. P. Preskill and S. J. van Enk for critical insights. My research is supported by the National Science Foundation, IARPA and Northrop Grumman Space Technology.

Author information

Affiliations

  1. Norman Bridge Laboratory of Physics 12–33, California Institute of Technology, Pasadena, California 91125, USA.

    • H. J. Kimble

Authors

  1. Search for H. J. Kimble in:

Competing interests

The author declares no competing financial interests.

Correspondence should be addressed to the author (hjkimble@caltech.edu).

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nature07127

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Newsletter Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing