Abstract
To process information using quantum-mechanical principles, the states of individual particles need to be entangled and manipulated. One way to do this is to use trapped, laser-cooled atomic ions. Attaining a general-purpose quantum computer is, however, a distant goal, but recent experiments show that just a few entangled trapped ions can be used to improve the precision of measurements. If the entanglement in such systems can be scaled up to larger numbers of ions, simulations that are intractable on a classical computer might become possible.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Underlying SUSY in a generalized Jaynes–Cummings model
Scientific Reports Open Access 13 August 2021
-
Increasing the Hilbert space dimension using a single coupled molecular spin
Nature Communications Open Access 21 July 2021
-
Superconductor qubits hamiltonian approximations effect on quantum state evolution and control
Scientific Reports Open Access 17 June 2021
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout






References
Ramsey, N. F. Molecular Beams (Clarendon, London, 1956).
Freedman, S. F. & Clauser, J. F. Experimental test of local hidden-variable theories. Phys. Rev. Lett. 28, 938–941 (1972).
Aspect, A., Grangier, P. & Roger, G. Experimental tests of realistic local theories via Bell's theorem. Phys. Rev. Lett. 47, 460–463 (1981).
Bell, J. S. Speakable and Unspeakable in Quantum Mechanics (Cambridge Univ. Press, Cambridge, UK, 1987).
Feynman, R. P. Simulating physics with computers. Int. J. Theoret. Phys. 21, 467–468 (1982).
Deutsch, D. Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400, 97–117 (1985).
Shor, P. W. Algorithms for quantum computation: discrete logarithms and factoring. In Proc. Annu. Symp. Found. Comput. Sci. 124–134 (1994).
Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, UK, 2000).
Cirac, J. I. & Zoller, P. Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995).
Monroe, C. Quantum information processing with atoms and photons. Nature 416, 238–246 (2002).
Dehmelt, H. Experiments with an isolated subatomic particle at rest. Rev. Mod. Phys. 62, 525–530 (1990).
Paul, W. Electromagnetic traps for charged and neutral particles. Rev. Mod. Phys. 62, 531–540 (1990).
Bollinger, J. J., Heinzen, D. J., Itano, W. M., Gilbert, S. L. & Wineland, D. J. A 303-MHz frequency standard based on trapped 9Be+ ions. IEEE Trans. Instrum. Meas. 40, 126–128 (1991).
Fisk, P. T. H. et al. Very high q microwave spectroscopy on trapped 171Yb+ ions: application as a frequencystandard. IEEE Trans. Instrum. Meas. 44, 113–116 (1995).
Blatt, R., Häffner, H., Roos, C., Becher, C. & Schmidt-Kaler, F. in Quantum Entanglement and Information Processing: Les Houches Session LXXIX (eds Estève, D. Raimond, J.-M. & Dalibard, J.) 223–260 (Elsevier, Amsterdam, 2004).
Wineland, D. J. in Quantum Entanglement and Information Processing: Les Houches Session LXXIX (eds Estève, D. Raimond, J.-M. & Dalibard, J.) 261–293 (Elsevier, Amsterdam, 2004).
Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003).
Wineland, D. J. et al. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl Inst. Stand. Technol. 103, 259–328 (1998).
Diedrich, F., Bergquist, J. C., Itano, W. M. & Wineland, D. J. Laser cooling to the zero-point energy of motion. Phys. Rev. Lett. 62, 403–406 (1989).
Dehmelt, H. G. Mono-ion oscillator as potential ultimate laser frequency standard. IEEE Trans. Instrum. Meas. 31, 83–87 (1982).
Monroe, C., Meekhof, D. M., King, B. E., Itano, W. M. & Wineland, D. J. Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75, 4714–4717 (1995).
Schmidt-Kaler, F. et al. Realization of the Cirac–Zoller controlled-NOT quantum gate. Nature 422, 408–411 (2003).
Schmidt-Kaler, F. et al. How to realize a universal quantum gate with trapped ions. Appl. Phys. B 77, 789–796 (2003).
Riebe, M. et al. Process tomography of ion trap quantum gates. Phys. Rev. Lett. 97, 220407 (2006).
Moehring, D. L. et al. Entanglement of single-atom quantum bits at a distance. Nature 449, 68–71 (2007).
Turchette, Q. A. et al. Deterministic entanglement of two trapped ions. Phys. Rev. Lett. 81, 3631–3634 (1998).
Rowe, M. A. et al. Experimental violation of a Bell's inequality with efficient detection. Nature 409, 791–794 (2001).
Roos, C. F. et al. Bell states of atoms with ultralong life times and their tomographic state analysis. Phys. Rev. Lett. 92, 220402 (2004).
Sackett, C. A. et al. Experimental entanglement of four particles. Nature 404, 256–259 (2000).
Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969).
Moehring, D. L., Madsen, M. J., Blinov, B. B. & Monroe, C. Experimental Bell inequality violation with an atom and a photon. Phys. Rev. Lett. 93, 090410 (2004).
Schrödinger, E. Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23, 807–812 (1935).
Greenberger, D. M., Horne, M. A. & Zeilinger, A. in Going Beyond Bell's Theorem (ed. Kafatos, M.) 69–72 (Kluwer Academic, Dordrecht, 1989).
DiVincenzo, D. P. & Shor, P. W. Fault-tolerant error correction withefficient quantum codes. Phys. Rev. Lett. 77, 3260–3263 (1996).
Steane, A. M. Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996).
Bollinger, J. J., Itano, W. M., Wineland, D. J. & Heinzen, D. J. Optimal frequency measure-ments with maximally correlated states. Phys. Rev. A 54, R4649–R4652 (1996).
Leibfried, D. et al. Toward Heisenberg-limited spectroscopy with multiparticle entangled states. Science 304, 1476–1478 (2004).
Leibfried, D. et al. Creation of a six-atom 'Schrödinger cat' state. Nature 438, 639–642 (2005).
Roos, C. F. et al. Control and measurement of three-qubit entangled states. Science 304, 1478–1480 (2004).
Dür, W., Vidal, G. & Cirac, J. I. Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000).
Häffner, H. et al. Scalable multiparticle entanglement of trapped ions. Nature 438, 643–646 (2005).
Deutsch, D. & Jozsa, R. Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. A 439, 553–558 (1992).
Chuang, I. L. et al. Experimental realization of a quantum algorithm. Nature 393, 143–146 (1998).
Gulde, S. et al. Implementation of the Deutsch–Jozsa algorithm on an ion-trap quantum computer. Nature 421, 48–50 (2003).
Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).
Barrett, M. D. et al. Deterministic quantum teleportation of atomic qubits. Nature 429, 737–739 (2004).
Riebe, M. et al. Deterministic quantum teleportation with atoms. Nature 429, 734–737 (2004).
Reichle, R. et al. Experimental purification of two-atom entanglement. Nature 443, 838–841 (2006).
Chiaverini, J. et al. Realization of quantum error correction. Nature 432, 602–605 (2004).
Chiaverini, J. et al. Implementation of the semiclassical quantum Fourier transform in a scalable system. Science 308, 997–1000 (2005).
Grover, L. K. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997).
Wineland, D. J., Bollinger, J. J., Itano, W. M., Moore, F. L. & Heinzen, D. J. Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A 46, R6797–R6800 (1992).
Itano, W. M. et al. Quantum projection noise: population fluctuations in two-level systems. Phys. Rev. A 47, 3554–3570 (1993).
Meyer, V. et al. Experimental demonstration of entanglement-enhanced rotation angle estimation using trapped ions. Phys. Rev. Lett. 86, 5870–5873 (2001).
Leibfried, D. et al. Trapped-ion quantum simulator: experimental application to nonlinear interferometers. Phys. Rev. Lett. 89, 247901 (2002).
Huelga, S. F. et al. Improvement of frequency standards with quantum entanglement. Phys. Rev. Lett. 79, 3865–3868 (1997).
André, A., Sørensen, A. S. & Lukin, M. D. Stability of atomic clocks based on entangled atoms. Phys. Rev. Lett. 92, 230801 (2004).
Schaetz, T. et al. Enhanced quantum state detection efficiency through quantum information processing. Phys. Rev. Lett. 94, 010501 (2005).
Hume, D. B., Rosenband, T. & Wineland, D. J. High-fidelity adaptive qubit detection through repetitive quantum nondemolition measurements. Phys. Rev. Lett. 99, 120502 (2007).
Rosenband, T. et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place. Science 319, 1808–1812 (2008).
Guerlin, C. et al. Progressive field-state collapse and quantum non-demolition photon counting. Nature 448, 889–894 (2007).
Roos, C. F., Chwalla, M., Kim, K., Riebe, M. & Blatt, R. 'Designer atoms' for quantum metrology. Nature 443, 316–319 (2006).
Benhelm, J., Kirchmair, G., Roos, C. F. & Blatt, R. Towards fault-tolerant quantum computing with trapped ions. Nature Phys. 4, 463–466 (2008).
Ozeri, R. et al. Errors in trapped-ion quantumgates due to spontaneous photon scattering. Phys. Rev. A 75, 042329 (2007).
Zhu, S.-L., Monroe, C. & Duan, L.-M. Arbitrary-speed quantum gates within large ion crystals through miminum control of laser beams. Europhys. Lett. 73, 485–491 (2006).
Duan, L.-M. Scaling ion trap quantum computation through fast quantum gates. Phys. Rev. Lett. 93, 100502 (2004).
DeVoe, R. G. Elliptical ion traps and trap arrays for quantum computation. Phys. Rev. A 58, 910–914 (1998).
Cirac, J. I. & Zoller, P. A scalable quantum computer with ions in an array of microtraps. Nature 404, 579–581 (2000).
Kielpinski, D., Monroe, C. & Wineland, D. J. Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002).
Cirac, I., Zoller, P., Kimble, J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).
Duan, L.-M. & Kimble, H. J. Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004).
Duan, L.-M. et al. Probabilistic quantum gates between remote atoms through interference of optical frequency qubits. Phys. Rev. A 73, 062324 (2006).
Rowe, M. et al. Transport of quantum states and separation of ions in a dual rf ion trap. Quantum Inform. Comput. 2, 257–271 (2002).
Hucul, D. et al. On the transport of atomic ions in linear and multidimensional trap arrays. Preprint at <http://arxiv.org/abs/quant-ph/0702175> (2007).
Huber, G. et al. Transport of ions in a segmented linear Paul trap in printed-circuit-board technology. New J. Phys. 10, 013004 (2008).
Rohde, H. et al. Sympathetic ground-state cooling and coherent manipulation with two-ion crystals. J. Opt. Soc. Am. B 3, S34–S41 (2001).
Blinov, B. B. et al. Sympathetic cooling of trapped Cd+ isotopes. Phys. Rev. A 65, 040304 (2002).
Barrett, M. D. et al. Sympathetic cooling of 9Be+ and 24Mg+ for quantum logic. Phys. Rev. A 68, 042302 (2003).
Turchette, Q. A. et al. Heating of trapped ions from the quantum ground state. Phys. Rev. A 61, 063418 (2000).
Deslauriers, L. et al. Scaling and suppression of anomalous heating in ion traps. Phys. Rev. Lett. 97, 103007 (2006).
Leibrandt, D., Yurke, B. & Slusher, R. Modeling ion trap thermal noise decoherence. Quant. Inform. Comput. 7, 52–72 (2007).
Labaziewicz, J. et al. Suppression of heating rates in cryogenic surface-electrode ion traps. Phys. Rev. Lett. 100, 013001 (2008).
Stick, D. et al. Ion trap in a semiconductor chip. Nature Phys. 2, 36–39 (2006).
Chiaverini, J. et al. Surface-electrode architecture for ion-trap quantum information processing. Quantum Inform. Comput. 5, 419–439 (2005).
Seidelin, S. et al. Microfabricated surface-electrode ion trap for scalable quantum information processing. Phys. Rev. Lett. 96, 253003 (2006).
Kim, J. et al. System design for large-scale ion trap quantum information processor. Quant. Inform. Comput. 5, 515–537 (2005).
Leibfried, D., Knill, E., Ospelkaus, C. & Wineland, D. J. Transport quantum logic gates for trapped ions. Phys. Rev. A 76, 032324 (2007).
Wunderlich, C. & Balzer, C. Quantum measurements and new concepts for experiments with trapped ions. Adv. At. Mol. Opt. Phys. 49, 293–376 (2003).
Porras, D. & Cirac, J. I. Quantum manipulation of trapped ions in two dimensional Coulomb crystals. Phys. Rev. Lett. 96, 250501 (2006).
Taylor, J. M. & Calarco, T. Wigner crystals of ions as quantum hard drives. Preprint at <http://arxiv.org/abs/0706.1951> (2007).
Chiaverini, J. & Lybarger Jr, W. E. Laserless trapped-ion quantum simulations without spontaneous scattering using microtrap arrays. Phys. Rev. A 77, 022324 (2008).
Mølmer, K. & Sørensen, A. Multiparticle entanglement of hot trapped ions. Phys. Rev. Lett. 82, 1835–1838 (1999).
Milburn, G. J., Schneider, S. & James, D. F. Ion trap quantum computing with warm ions. Fortschr. Physik 48, 801–810 (2000).
Solano, E., de Matos Filho, R. L. & Zagury, N. Mesoscopic superpositions of vibronic collective states of N trapped ions. Phys. Rev. Lett. 87, 060402 (2001).
Leibfried, D. et al. Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature 422, 412–415 (2003).
Haljan, P. C. et al. Entanglement of trapped-ion clock states. Phys. Rev. A 72, 062316 (2005).
Home, J. P. et al. Deterministic entanglement and tomography of ion spin qubits. New J. Phys. 8, 188 (2006).
Matsukevich, D. N., Maunz, P., Moehring, D. L., Olmschenk, S. & Monroe, C. Bell inequality violation with two remote atomic qubits. Phys. Rev. Lett. 100, 150404 (2008).
Hensinger, W. K. et al. T-junction ion trap array for two-dimensional ion shuttling storage, and manipulation. Appl. Phys. Lett. 88, 034101 (2006).
Acknowledgements
We thank H. Häffner, J. Home, E. Knill, D. Leibfried, C. Roos and P. Schmidt for comments on the manuscript.
Author information
Authors and Affiliations
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Additional information
Correspondence should be addressed to R.B. (Rainer.Blatt@uibk.ac.at).
Rights and permissions
About this article
Cite this article
Blatt, R., Wineland, D. Entangled states of trapped atomic ions. Nature 453, 1008–1015 (2008). https://doi.org/10.1038/nature07125
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature07125
This article is cited by
-
Numerical investigation of a segmented-blade ion trap with biasing rods
Applied Physics B (2023)
-
Fast quantum state transfer and entanglement for cavity-coupled many qubits via dark pathways
Frontiers of Physics (2022)
-
Underlying SUSY in a generalized Jaynes–Cummings model
Scientific Reports (2021)
-
Increasing the Hilbert space dimension using a single coupled molecular spin
Nature Communications (2021)
-
Asymmetric Rydberg blockade of giant excitons in Cuprous Oxide
Nature Communications (2021)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.