Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for translation termination on the 70S ribosome

Abstract

At termination of protein synthesis, type I release factors promote hydrolysis of the peptidyl-transfer RNA linkage in response to recognition of a stop codon. Here we describe the crystal structure of the Thermus thermophilus 70S ribosome in complex with the release factor RF1, tRNA and a messenger RNA containing a UAA stop codon, at 3.2 Å resolution. The stop codon is recognized in a pocket formed by conserved elements of RF1, including its PxT recognition motif, and 16S ribosomal RNA. The codon and the 30S subunit A site undergo an induced fit that results in stabilization of a conformation of RF1 that promotes its interaction with the peptidyl transferase centre. Unexpectedly, the main-chain amide group of Gln 230 in the universally conserved GGQ motif of the factor is positioned to contribute directly to peptidyl-tRNA hydrolysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of RF1 in the termination complex.
Figure 2: Interactions with the UAA stop codon in the decoding centre of the RF1 termination complex.
Figure 3: Interactions of the GGQ region of RF1 in the PTC.
Figure 4: Stereo view of the RF1 binding pocket for 23S rRNA nucleotide A2602.
Figure 5: Rearrangements and packing of the switch loop of RF1.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Atomic coordinates and structure factors have been deposited with the Protein Data Bank under accession codes 3D5A, 3D5B, 3D5C and 3D5D.

References

  1. Capecchi, M. R. Polypeptide chain termination in vitro: isolation of a release factor. Proc. Natl Acad. Sci. USA 58, 1144–1151 (1967)

    Article  ADS  CAS  Google Scholar 

  2. Caskey, C. T., Beaudet, A. L., Scolnick, E. M. & Rosman, M. Hydrolysis of fMet-tRNA by peptidyl transferase. Proc. Natl Acad. Sci. USA 68, 3163–3167 (1971)

    Article  ADS  CAS  Google Scholar 

  3. Vogel, Z., Zamir, A. & Elson, D. The possible involvement of peptidyl transferase in the termination step of protein biosynthesis. Biochemistry 8, 5161–5168 (1969)

    Article  CAS  Google Scholar 

  4. Scolnick, E., Tompkins, R., Caskey, T. & Nirenberg, M. Release factors differing in specificity for terminator codons. Proc. Natl Acad. Sci. USA 61, 768–774 (1968)

    Article  ADS  CAS  Google Scholar 

  5. Capecchi, M. R. & Klein, H. A. Characterization of three proteins involved in polypeptide chain termination. Cold Spring Harb. Symp. Quant. Biol. 34, 469–477 (1969)

    Article  CAS  Google Scholar 

  6. Scolnick, E. M. & Caskey, C. T. Peptide chain termination. V. The role of release factors in mRNA terminator codon recognition. Proc. Natl Acad. Sci. USA 64, 1235–1241 (1969)

    Article  ADS  CAS  Google Scholar 

  7. Freistroffer, D. V., Kwiatkowski, M., Buckingham, R. H. & Ehrenberg, M. The accuracy of codon recognition by polypeptide release factors. Proc. Natl Acad. Sci. USA 97, 2046–2051 (2000)

    Article  ADS  CAS  Google Scholar 

  8. Petry, S. et al. Crystal structures of the ribosome in complex with release factors RF1 and RF2 bound to a cognate stop codon. Cell 123, 1255–1266 (2005)

    Article  CAS  Google Scholar 

  9. Klaholz, B. P. et al. Structure of the Escherichia coli ribosomal termination complex with release factor 2. Nature 421, 90–94 (2003)

    Article  ADS  CAS  Google Scholar 

  10. Rawat, U. B. et al. A cryo-electron microscopic study of ribosome-bound termination factor RF2. Nature 421, 87–90 (2003)

    Article  ADS  CAS  Google Scholar 

  11. Ito, K., Uno, M. & Nakamura, Y. A tripeptide ‘anticodon’ deciphers stop codons in messenger RNA. Nature 403, 680–684 (2000)

    Article  ADS  CAS  Google Scholar 

  12. Nakamura, Y. & Ito, K. A tripeptide discriminator for stop codon recognition. FEBS Lett. 514, 30–33 (2002)

    Article  CAS  Google Scholar 

  13. Ogle, J. M., Carter, A. P. & Ramakrishnan, V. Insights into the decoding mechanism from recent ribosome structures. Trends Biochem. Sci. 28, 259–266 (2003)

    Article  CAS  Google Scholar 

  14. Ogle, J. M. et al. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292, 897–902 (2001)

    Article  ADS  CAS  Google Scholar 

  15. Selmer, M. et al. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313, 1935–1942 (2006)

    Article  ADS  CAS  Google Scholar 

  16. Youngman, E. M., Cochella, L., Brunelle, J. L., He, S. & Green, R. Two distinct conformations of the conserved RNA-rich decoding center of the small ribosomal subunit are recognized by tRNAs and release factors. Cold Spring Harb. Symp. Quant. Biol. 71, 545–549 (2006)

    Article  CAS  Google Scholar 

  17. Youngman, E. M., He, S. L., Nikstad, L. J. & Green, R. Stop codon recognition by release factors induces structural rearrangement of the ribosomal decoding center that is productive for peptide release. Mol. Cell 28, 533–543 (2007)

    Article  CAS  Google Scholar 

  18. Frolova, L. Y. et al. Mutations in the highly conserved GGQ motif of class 1 polypeptide release factors abolish ability of human eRF1 to trigger peptidyl-tRNA hydrolysis. RNA 5, 1014–1020 (1999)

    Article  CAS  Google Scholar 

  19. Seit-Nebi, A., Frolova, L., Justesen, J. & Kisselev, L. Class-1 translation termination factors: invariant GGQ minidomain is essential for release activity and ribosome binding but not for stop codon recognition. Nucleic Acids Res. 29, 3982–3987 (2001)

    Article  CAS  Google Scholar 

  20. Mora, L. et al. The essential role of the invariant GGQ motif in the function and stability in vivo of bacterial release factors RF1 and RF2. Mol. Microbiol. 47, 267–275 (2003)

    Article  CAS  Google Scholar 

  21. Shaw, J. J. & Green, R. Two distinct components of release factor function uncovered by nucleophile partitioning analysis. Mol. Cell 28, 458–467 (2007)

    Article  CAS  Google Scholar 

  22. Trobro, S. & Aqvist, J. A model for how ribosomal release factors induce peptidyl-tRNA cleavage in termination of protein synthesis. Mol. Cell 27, 758–766 (2007)

    Article  CAS  Google Scholar 

  23. Song, H. et al. The crystal structure of human eukaryotic release factor eRF1–mechanism of stop codon recognition and peptidyl-tRNA hydrolysis. Cell 100, 311–321 (2000)

    Article  CAS  Google Scholar 

  24. Seit Nebi, A., Frolova, L., Ivanova, N., Poltaraus, A. & Kisselev, L. Mutation of a glutamine residue in the universal tripeptide GGQ in human eRF1 termination factor does not cause complete loss of its activity. Mol. Biol. (Mosk.) 34, 899–900 (2000)

    Article  CAS  Google Scholar 

  25. Schmeing, T. M., Huang, K. S., Strobel, S. A. & Steitz, T. A. An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNA. Nature 438, 520–524 (2005)

    Article  ADS  CAS  Google Scholar 

  26. Vestergaard, B. et al. Bacterial polypeptide release factor RF2 is structurally distinct from eukaryotic eRF1. Mol. Cell 8, 1375–1382 (2001)

    Article  CAS  Google Scholar 

  27. Schuwirth, B. S. et al. Structures of the bacterial ribosome at 3.5 A resolution. Science 310, 827–834 (2005)

    Article  ADS  CAS  Google Scholar 

  28. Amort, M. et al. An intact ribose moiety at A2602 of 23S rRNA is key to trigger peptidyl-tRNA hydrolysis during translation termination. Nucleic Acids Res. 35, 5130–5140 (2007)

    Article  CAS  Google Scholar 

  29. Polacek, N. et al. The critical role of the universally conserved A2602 of 23S ribosomal RNA in the release of the nascent peptide during translation termination. Mol. Cell 11, 103–112 (2003)

    Article  CAS  Google Scholar 

  30. Youngman, E. M., Brunelle, J. L., Kochaniak, A. B. & Green, R. The active site of the ribosome is composed of two layers of conserved nucleotides with distinct roles in peptide bond formation and peptide release. Cell 117, 589–599 (2004)

    Article  CAS  Google Scholar 

  31. Maegley, K. A., Admiraal, S. J. & Herschlag, D. Ras-catalyzed hydrolysis of GTP: A new perspective from model studies. Proc. Natl Acad. Sci. USA 93, 8160–8166 (1996)

    Article  ADS  CAS  Google Scholar 

  32. Li, G. & Zhang, X. C. GTP hydrolysis mechanism of Ras-like GTPases. J. Mol. Biol. 340, 921–932 (2004)

    Article  CAS  Google Scholar 

  33. Schmeing, T. M., Huang, K. S., Kitchen, D. E., Strobel, S. A. & Steitz, T. A. Structural insights into the roles of water and the 2' hydroxyl of the P site tRNA in the peptidyl transferase reaction. Mol. Cell 20, 437–448 (2005)

    Article  CAS  Google Scholar 

  34. Schmeing, T. M., Moore, P. B. & Steitz, T. A. Structures of deacylated tRNA mimics bound to the E site of the large ribosomal subunit. RNA 9, 1345–1352 (2003)

    Article  CAS  Google Scholar 

  35. Zavialov, A. V., Mora, L., Buckingham, R. H. & Ehrenberg, M. Release of peptide promoted by the GGQ motif of class 1 release factors regulates the GTPase activity of RF3. Mol. Cell 10, 789–798 (2002)

    Article  CAS  Google Scholar 

  36. Dincbas-Renqvist, V. et al. A post-translational modification in the GGQ motif of RF2 from Escherichia coli stimulates termination of translation. EMBO J. 19, 6900–6907 (2000)

    Article  CAS  Google Scholar 

  37. Shin, D. H. et al. Structural analyses of peptide release factor 1 from Thermotoga maritima reveal domain flexibility required for its interaction with the ribosome. J. Mol. Biol. 341, 227–239 (2004)

    Article  CAS  Google Scholar 

  38. Zoldak, G. et al. Release factors 2 from Escherichia coli and Thermus thermophilus: structural, spectroscopic and microcalorimetric studies. Nucleic Acids Res. 35, 1343–1353 (2007)

    Article  CAS  Google Scholar 

  39. Vestergaard, B. et al. The SAXS solution structure of RF1 differs from its crystal structure and is similar to its ribosome bound cryo-EM structure. Mol. Cell 20, 929–938 (2005)

    Article  CAS  Google Scholar 

  40. Ali, I. K., Lancaster, L., Feinberg, J., Joseph, S. & Noller, H. F. Deletion of a conserved, central ribosomal intersubunit RNA bridge. Mol. Cell 23, 865–874 (2006)

    Article  CAS  Google Scholar 

  41. Brunger, A. T. et al. Crystallography and NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  CAS  Google Scholar 

  42. Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D 58, 1948–1954 (2002)

    Article  Google Scholar 

  43. Yusupov, M. M. et al. Crystal structure of the ribosome at 5.5 A resolution. Science 292, 883–896 (2001)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Scott for his input through many stages of this work, and D. Ermolenko, L. Horan, L. Lancaster, B. Scott and D. Staple for comments on the manuscript. We are grateful to the beamline staff at SSRL, ALS and APS for their support during screening and data collection, and to Crystal Chan for her help in using the Berkeley Fermentation Facility. This work was supported by grants from the NIH and NSF (to H.F.N.) and by a fellowship from the Danish Research Council (to M.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry F. Noller.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Table S1, Supplementary Figures S1-S11 and References. (PDF 1769 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laurberg, M., Asahara, H., Korostelev, A. et al. Structural basis for translation termination on the 70S ribosome. Nature 454, 852–857 (2008). https://doi.org/10.1038/nature07115

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07115

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing