Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates

Abstract

The ability to form integrated circuits on flexible sheets of plastic enables attributes (for example conformal and flexible formats and lightweight and shock resistant construction) in electronic devices that are difficult or impossible to achieve with technologies that use semiconductor wafers or glass plates as substrates1. Organic small-molecule and polymer-based materials represent the most widely explored types of semiconductors for such flexible circuitry2. Although these materials and those that use films or nanostructures of inorganics have promise for certain applications, existing demonstrations of them in circuits on plastic indicate modest performance characteristics that might restrict the application possibilities. Here we report implementations of a comparatively high-performance carbon-based semiconductor consisting of sub-monolayer, random networks of single-walled carbon nanotubes to yield small- to medium-scale integrated digital circuits, composed of up to nearly 100 transistors on plastic substrates. Transistors in these integrated circuits have excellent properties: mobilities as high as 80 cm2 V-1 s-1, subthreshold slopes as low as 140 m V dec-1, operating voltages less than 5 V together with deterministic control over the threshold voltages, on/off ratios as high as 105, switching speeds in the kilohertz range even for coarse (100-μm) device geometries, and good mechanical flexibility—all with levels of uniformity and reproducibility that enable high-yield fabrication of integrated circuits. Theoretical calculations, in contexts ranging from heterogeneous percolative transport through the networks to compact models for the transistors to circuit level simulations, provide quantitative and predictive understanding of these systems. Taken together, these results suggest that sub-monolayer films of single-walled carbon nanotubes are attractive materials for flexible integrated circuits, with many potential areas of application in consumer and other areas of electronics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Illustration, scanning electron microscope images, theoretical modelling results and photographs of flexible SWNT integrated circuits on plastic.
Figure 2: Electrical properties of thin-film transistors that use SWNT network strips for the semiconductor, on thin plastic substrates.
Figure 3: Circuit diagram, optical micrographs, output–input characteristics and circuit simulation results for different logic gates.
Figure 4: Medium-scale integrated circuits based on SWNT network strips, on a thin plastic substrate.

References

  1. 1

    Reuss, R. H. et al. Macroelectronics: Perspectives on technology and applications. Proc. IEEE 93, 1239–1256 (2005)

    Article  CAS  Google Scholar 

  2. 2

    Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004)

    ADS  PubMed  Article  CAS  Google Scholar 

  3. 3

    Gelinck, G. H. et al. Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nature Mater. 3, 106–110 (2004)

    ADS  Article  CAS  Google Scholar 

  4. 4

    Rogers, J. A. et al. Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc. Natl Acad. Sci. USA 98, 4835–4840 (2001)

    ADS  PubMed  Article  CAS  Google Scholar 

  5. 5

    Someya, T. et al. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc. Natl Acad. Sci. USA 102, 12321–12325 (2005)

    ADS  PubMed  Article  CAS  Google Scholar 

  6. 6

    Sekitani, T. et al. A large-area wireless power-transmission sheet using printed organic transistors and plastic MEMS switches. Nature Mater. 6, 413–417 (2007)

    ADS  Article  CAS  Google Scholar 

  7. 7

    Crone, B. et al. Large-scale complementary integrated circuits based on organic transistors. Nature 403, 521–523 (2000)

    ADS  PubMed  Article  CAS  Google Scholar 

  8. 8

    Singh, T. B. & Sariciftci, N. S. Progress in plastic electronics devices. Annu. Rev. Mater. Res. 36, 199–230 (2006)

    ADS  Article  CAS  Google Scholar 

  9. 9

    Briseno, A. L. et al. Patterning organic single-crystal transistor arrays. Nature 444, 913–917 (2006)

    ADS  PubMed  Article  CAS  Google Scholar 

  10. 10

    Blanchet, G. B., Loo, Y. L., Rogers, J. A., Gao, F. & Fincher, C. R. Large area, high resolution, dry printing of conducting polymers for organic electronics. Appl. Phys. Lett. 82, 463–465 (2003)

    ADS  Article  CAS  Google Scholar 

  11. 11

    Sirringhaus, H. et al. High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 2123–2126 (2000)

    ADS  PubMed  Article  CAS  Google Scholar 

  12. 12

    Avouris, P., Chen, Z. H. & Perebeinos, V. Carbon-based electronics. Nature Nanotechnol. 2, 605–615 (2007)

    ADS  Article  CAS  Google Scholar 

  13. 13

    Bradley, K., Gabriel, J. C. P. & Gruner, G. Flexible nanotube electronics. Nano Lett. 3, 1353–1355 (2003)

    ADS  Article  CAS  Google Scholar 

  14. 14

    Zhou, Y. X. et al. p-channel, n-channel thin film transistors and p-n diodes based on single wall carbon nanotube networks. Nano Lett. 4, 2031–2035 (2004)

    ADS  Article  CAS  Google Scholar 

  15. 15

    Snow, E. S., Campbell, P. M., Ancona, M. G. & Novak, J. P. High-mobility carbon-nanotube thin-film transistors on a polymeric substrate. Appl. Phys. Lett. 86, 033105 (2005)

    ADS  Article  CAS  Google Scholar 

  16. 16

    Seidel, R. et al. High-current nanotube transistors. Nano Lett. 4, 831–834 (2004)

    ADS  Article  CAS  Google Scholar 

  17. 17

    Kang, S. J. et al. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nature Nanotechnol. 2, 230–236 (2007)

    ADS  Article  CAS  Google Scholar 

  18. 18

    Chimot, N. et al. Gigahertz frequency flexible carbon nanotube transistors. Appl. Phys. Lett. 91, 153111 (2007)

    ADS  Article  CAS  Google Scholar 

  19. 19

    Beecher, P. et al. Ink-jet printing of carbon nanotube thin film transistors. J. Appl. Phys. 102, 043710 (2007)

    ADS  Article  CAS  Google Scholar 

  20. 20

    Kocabas, C. et al. Experimental and theoretical studies of transport through large scale, partially aligned arrays of single-walled carbon nanotubes in thin film type transistors. Nano Lett. 7, 1195–1202 (2007)

    ADS  PubMed  Article  CAS  Google Scholar 

  21. 21

    Chason, M., Brazis, P. W., Zhang, H., Kalyanasundaram, K. & Gamota, D. R. Printed organic semiconducting devices. Proc. IEEE 93, 1348–1356 (2005)

    Article  CAS  Google Scholar 

  22. 22

    Klauk, H., Zschieschang, U., Pflaum, J. & Halik, M. Ultralow-power organic complementary circuits. Nature 445, 745–748 (2007)

    ADS  PubMed  Article  CAS  Google Scholar 

  23. 23

    Yoon, M. H., Yan, H., Facchetti, A. & Marks, T. J. Low-voltage organic field-effect transistors and inverters enabled by ultrathin cross-linked polymers as gate dielectrics. J. Am. Chem. Soc. 127, 10388–10395 (2005)

    PubMed  Article  CAS  Google Scholar 

  24. 24

    Duan, X. F. et al. High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 425, 274–278 (2003)

    ADS  PubMed  Article  CAS  Google Scholar 

  25. 25

    Kim, D. H. et al. Complementary logic gates and ring oscillators on plastic substrates by use of printed ribbons of single-crystalline silicon. IEEE Trans. Electron Devices 29, 73–76 (2008)

    Article  CAS  Google Scholar 

  26. 26

    Arnold, M. S., Green, A. A., Hulvat, J. F., Stupp, S. I. & Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nature Nanotechnol. 1, 60–65 (2006)

    ADS  Article  CAS  Google Scholar 

  27. 27

    Chen, Z. H. et al. An integrated logic circuit assembled on a single carbon nanotube. Science 311, 1735 (2006)

    PubMed  Article  CAS  Google Scholar 

  28. 28

    Shim, M., Ozel, T., Gaur, A. & Wang, C. J. Insights on charge transfer doping and intrinsic phonon line shape of carbon nanotubes by simple polymer adsorption. J. Am. Chem. Soc. 128, 7522–7530 (2006)

    PubMed  Article  CAS  Google Scholar 

  29. 29

    Javey, A., Guo, J., Wang, Q., Lundstrom, M. & Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003)

    ADS  PubMed  Article  CAS  Google Scholar 

  30. 30

    Chen, J., Klinke, C., Afzali, A. & Avouris, P. Self-aligned carbon nanotube transistors with charge transfer doping. Appl. Phys. Lett. 86, 123108 (2005)

    ADS  Article  CAS  Google Scholar 

  31. 31

    Plummer, J. D., Deal, M. D. & Griffin, P. B. Silicon VLSI Technology: Fundamentals, Practice and Modeling Ch. 4 (Prentice Hall, Upper Saddle River, New Jersey, 2002)

    Google Scholar 

  32. 32

    Li, Y. M. et al. Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes. J. Phys. Chem. B 105, 11424–11431 (2001)

    Article  CAS  Google Scholar 

  33. 33

    Maria, J., Malyarchuk, V., White, J. & Rogers, J. A. Experimental and computational studies of phase shift lithography with binary elastomeric masks. J. Vac. Sci. Technol. B 24, 828–835 (2006)

    Article  CAS  Google Scholar 

  34. 34

    Menard, E. et al. Micro- and nanopatterning techniques for organic electronic and optoelectronic systems. Chem. Rev. 107, 1117–1160 (2007)

    PubMed  Article  CAS  Google Scholar 

  35. 35

    Zhou, L. S., Jung, S. Y., Brandon, E. & Jackson, T. N. Flexible substrate micro-crystalline silicon and gated amorphous silicon strain sensors. IEEE Trans. Electron Devices 53, 380–385 (2006)

    ADS  Article  Google Scholar 

  36. 36

    Brekner, M. J. & Feger, C. Curing studies of a polyimide precursor. 2. Polyamic acid. J. Polym. Sci. Pol. Chem. 25, 2479–2491 (1987)

    Article  CAS  Google Scholar 

  37. 37

    Javey, A. et al. High-kappa dielectrics for advanced carbon-nanotube transistors and logic gates. Nature Mater. 1, 241–246 (2002)

    ADS  Article  CAS  Google Scholar 

  38. 38

    Hausmann, D. M., Kim, E., Becker, J. & Gordon, R. G. Atomic layer deposition of hafnium and zirconium oxides using metal amide precursors. Chem. Mater. 14, 4350–4358 (2002)

    Article  CAS  Google Scholar 

  39. 39

    Fujii, S., Miyata, N., Migita, S., Horikawa, T. & Toriumi, A. Nanometer-scale crystallization of thin HfO2 films studied by HF-chemical etching. Appl. Phys. Lett. 86, 212907 (2005)

    ADS  Article  CAS  Google Scholar 

  40. 40

    Philofsk, E. Intermetallic formation in gold-aluminum systems. Solid State Electron. 13, 1391–1399 (1970)

    ADS  Article  Google Scholar 

  41. 41

    Kumar, S., Murthy, J. Y. & Alam, M. A. Percolating conduction in finite nanotube networks. Phys. Rev. Lett. 95, 066802 (2005)

    ADS  PubMed  Article  CAS  Google Scholar 

  42. 42

    Pimparkar, N. et al. Current-voltage characteristics of long-channel nanobundle thin-film transistors: A “bottom-up” perspective. IEEE Electron Device Lett. 28, 157–160 (2007)

    ADS  Article  CAS  Google Scholar 

  43. 43

    Rabaey, J. M. Digital Integrated Circuits: A Design Perspective (Prentice Hall, Upper Saddle River, New Jersey, 2002)

    Google Scholar 

Download references

Acknowledgements

We thank T. Banks, K. Colravy and D. Sievers for help with the processing. This material is based upon work supported by the US National Science Foundation (NIRT-0403489), the US Department of Energy (DE-FG02-07ER46471), Motorola, Inc., the Frederick-Seitz Materials Research Laboratory and the Center for Microanalysis of Materials (DE-FG02-07ER46453 and DE-FG02-07ER46471) at the University of Illinois. Q.C. acknowledges fellowship support from the Department of Chemistry at the University of Illinois. N.P., J.P.K., M.A. and K.R. acknowledge support from the Network for Computational Nanotechnology, which is supported by the National Science Foundation under cooperative agreement EEC-0634750. J.P.K. acknowledges fellowship support from the Intel Foundation.

Author Contributions Q.C., H.K. and J.A.R. designed the experiments. Q.C., H.K. and C.W. performed the experiments. Q.C., N.P., J.P.K., M.S., K.R., M.A.A. and J.A.R. analysed the data. Q.C. and J.A.R. wrote the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to John A. Rogers.

Supplementary information

Supplementary information

The file contains Supplementary Discussion, which presents results on channel length scaling, gate capacitance measurements, distribution of device on/off ratios, the dependence of off-state current on drain-source voltage, distribution of effective device mobility and subthreshold swing, switching speed characteristics of the four-bit decoder circuit, operational stability test of SWNT TFTs, and some estimations on device properties, Supplementary Table 1, which gives fitting parameters used in HSPICE device simulations, Supplementary Figures and Legends 1-9, and additional references, which accompany the Supplementary Discussion. (PDF 2517 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cao, Q., Kim, Hs., Pimparkar, N. et al. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 454, 495–500 (2008). https://doi.org/10.1038/nature07110

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing