Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Thermochemical flows couple the Earth's inner core growth to mantle heterogeneity

Abstract

Seismic waves sampling the top 100 km of the Earth's inner core reveal that the eastern hemisphere (40° E–180° E) is seismically faster1,2, more isotropic2,3 and more attenuating4 than the western hemisphere. The origin of this hemispherical dichotomy is a challenging problem for our understanding of the Earth as a system of dynamically coupled layers. Previously, laboratory experiments have established that thermal control from the lower mantle can drastically affect fluid flow in the outer core5, which in turn can induce textural heterogeneity on the inner core solidification front6. The resulting texture should be consistent with other expected manifestations of thermal mantle control on the geodynamo, specifically magnetic flux concentrations7,8 in the time-average palaeomagnetic field9,10 over the past 5 Myr, and preferred eddy locations11 in flows imaged below the core–mantle boundary by the analysis of historical geomagnetic secular variation12. Here we show that a single model of thermochemical convection and dynamo action can account for all these effects by producing a large-scale, long-term outer core flow that couples the heterogeneity of the inner core with that of the lower mantle. The main feature of this thermochemical ‘wind’ is a cyclonic circulation below Asia, which concentrates magnetic field on the core–mantle boundary at the observed location and locally agrees with core flow images. This wind also causes anomalously high rates of light element release in the eastern hemisphere of the inner core boundary, suggesting that lateral seismic anomalies at the top of the inner core result from mantle-induced variations in its freezing rate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time-average flow structure of model case I.
Figure 2: Comparison between model and observations.

Similar content being viewed by others

References

  1. Niu, F. L. & Wen, L. X. Hemispherical variations in seismic velocity at the top of the Earth's inner core. Nature 410, 1081–1084 (2001)

    Article  ADS  CAS  Google Scholar 

  2. Tanaka, S. & Hamaguchi, H. Degree one heterogeneity and hemispherical variation of anisotropy in the inner core from PKP(BC)-PKP(DF) times. J. Geophys. Res. 102, 2925–2938 (1997)

    Article  ADS  Google Scholar 

  3. Yu, W. C. & Wen, L. X. Inner core attenuation anisotropy. Earth Planet. Sci. Lett. 245, 581–594 (2006)

    Article  ADS  CAS  Google Scholar 

  4. Cao, A. & Romanowicz, B. Hemispherical transition of seismic attenuation at the top of the Earth's inner core. Earth Planet. Sci. Lett. 228, 243–253 (2004)

    Article  ADS  CAS  Google Scholar 

  5. Sumita, I. & Olson, P. A laboratory model for convection in Earth's core driven by a thermally heterogeneous mantle. Science 286, 1547–1549 (1999)

    Article  CAS  Google Scholar 

  6. Bergman, M. I., Macleod-Silberstein, M., Haskel, M., Chandler, B. & Akpan, N. A laboratory model for solidification of Earth's core. Phys. Earth Planet. Inter. 153, 150–164 (2005)

    Article  ADS  CAS  Google Scholar 

  7. Olson, P. & Christensen, U. The time averaged magnetic field in numerical dynamos with non-uniform boundary heat flow. Geophys. J. Int. 151, 809–823 (2002)

    Article  ADS  Google Scholar 

  8. Gubbins, D., Willis, A. P. & Sreenivasan, B. Correlation of Earth's magnetic field with lower mantle thermal and seismic structure. Phys. Earth Planet. Inter. 162, 256–260 (2007)

    Article  ADS  Google Scholar 

  9. Johnson, C. L. & Constable, C. G. The time averaged geomagnetic field as recorded by lava flows over the past 5 Myr. Geophys. J. Int. 122, 489–519 (1995)

    Article  ADS  Google Scholar 

  10. Kelly, P. & Gubbins, D. The geomagnetic field over the past 5 million years. Geophys. J. Int. 128, 315–330 (1997)

    Article  ADS  Google Scholar 

  11. Aubert, J., Amit, H. & Hulot, G. Detecting thermal boundary control in surface flows from numerical dynamos. Phys. Earth Planet. Inter. 160, 143–156 (2007)

    Article  ADS  Google Scholar 

  12. Amit, H. & Olson, P. Time average and time dependent parts of core flow. Phys. Earth Planet. Inter. 155, 120–139 (2006)

    Article  ADS  Google Scholar 

  13. Lay, T., Hernlund, J., Garnero, E. J. & Thorne, M. S. A post-perovskite lens and D” heat flux beneath the central Pacific. Science 314, 1272–1276 (2006)

    Article  ADS  CAS  Google Scholar 

  14. van der Hilst, R. et al. Seismostratigraphy and thermal structure of Earth's core-mantle boundary region. Science 315, 1813–1817 (2007)

    Article  ADS  CAS  Google Scholar 

  15. Masters, G., Laske, G., Bolton, H. & Dziewonski, A. in Earth's Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale (eds Karato, S., Forte, A., Liebermann, R. C., Masters, G. & Stixrude, L.) 63–87 (AGU Monogr. Vol. 117, American Geophysical Union, Washington DC, 2000)

    Book  Google Scholar 

  16. van der Hilst, R., Widiyantoro, S. & Engdahl, E. R. Evidence for deep mantle circulation from global tomography. Nature 386, 578–584 (1997)

    Article  ADS  CAS  Google Scholar 

  17. McNamara, A. K. & Zhong, S. J. Thermochemical structures beneath Africa and the Pacific Ocean. Nature 437, 1136–1139 (2005)

    Article  ADS  CAS  Google Scholar 

  18. Torsvik, T. H., Smethurst, M. A., Burke, K. & Steinberger, B. Large igneous provinces generated from the margins of the large low-velocity provinces in the deep mantle. Geophys. J. Int. 167, 1447–1460 (2006)

    Article  ADS  Google Scholar 

  19. Labrosse, S., Poirier, J. P. & Le Mouel, J. L. The age of the inner core. Earth Planet. Sci. Lett. 190, 111–123 (2001)

    Article  ADS  CAS  Google Scholar 

  20. Braginsky, S. I. & Roberts, P. H. Equations governing convection in Earth’s core and the geodynamo. Geophys. Astrophys. Fluid Dyn. 79, 1–97 (1995)

    Article  ADS  Google Scholar 

  21. Christensen, U. & Aubert, J. Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields. Geophys. J. Int. 117, 97–114 (2006)

    Article  ADS  Google Scholar 

  22. Olson, P., Christensen, U. & Glatzmaier, G. A. Numerical modelling of the geodynamo: Mechanisms of field generation and equilibration. J. Geophys. Res. 104, 10383–10404 (1999)

    Article  ADS  Google Scholar 

  23. Yoshida, S., Sumita, I. & Kumazawa, M. Growth model of the inner core coupled with the outer core dynamics and the resulting elastic anisotropy. J. Geophys. Res. 101, 28085–28103 (1996)

    Article  ADS  CAS  Google Scholar 

  24. Bergman, M. I., Agrawal, S., Carter, M. & Macleod-Silberstein, M. Transverse solidification textures in hexagonal close-packed alloys. J. Cryst. Growth 255, 204–211 (2003)

    Article  ADS  CAS  Google Scholar 

  25. Cormier, V. Texture of the uppermost inner core from forward and back scattered seismic waves. Earth Planet. Sci. Lett. 258, 442–453 (2007)

    Article  ADS  CAS  Google Scholar 

  26. Buffett, B. A. & Glatzmaier, G. A. Gravitational braking of inner-core rotation in geodynamo simulations. Geophys. Res. Lett. 27, 3125–3128 (2000)

    Article  ADS  Google Scholar 

  27. Mound, J. E. & Buffett, B. A. Detection of a gravitational oscillation in length-of-day. Earth Planet. Sci. Lett. 243, 383–389 (2006)

    Article  ADS  CAS  Google Scholar 

  28. Aurnou, J. & Olson, P. Control of inner core rotation by electromagnetic, gravitational and mechanical torques. Phys. Earth Planet. Inter. 117, 111–121 (2000)

    Article  ADS  Google Scholar 

  29. Dumberry, M. Geodynamic constraints on the steady and time-dependent inner core axial rotation. Geophys. J. Int. 170, 886–895 (2007)

    Article  ADS  Google Scholar 

  30. Souriau, A. in Treatise on Geophysics Vol. 1, Seismology and Structure of the Earth (eds Dziewonski, A. & Romanowicz, B.) 655–693 (Elsevier, 2007)

    Book  Google Scholar 

  31. Wicht, J. Inner-core conductivity in numerical dynamo simulations. Phys. Earth Planet. Inter. 132, 281–302 (2002)

    Article  ADS  Google Scholar 

  32. Lister, J. R. & Buffett, B. A. The strength and efficiency of thermal and compositional convection in the geodynamo. Phys. Earth Planet. Inter. 91, 17–30 (1995)

    Article  ADS  Google Scholar 

  33. Secco, R. A. & Shloessin, H. H. The electrical resistivity of solid and liquid Fe at pressures up to 7 GPa. J. Geophys. Res. 94, 5887–5894 (1989)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

J.A. was supported by the SEDIT programme of CNRS-INSU. H.A. was supported by a Marie Curie intra-European grant. Numerical calculations were performed at the Service de Calcul Parallèle, IPGP, and at IDRIS, France. We thank S. Tanaka for providing published data, and V. Cormier for discussions. This is IPGP contribution 2369.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Aubert.

Supplementary information

Supplementary information

The file contains Supplementary Discussion and Supplementary Figure 1.with Legend. The file includes information about model assumptions, scaling relationships and the choice of model parameters. (PDF 1424 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aubert, J., Amit, H., Hulot, G. et al. Thermochemical flows couple the Earth's inner core growth to mantle heterogeneity. Nature 454, 758–761 (2008). https://doi.org/10.1038/nature07109

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07109

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing