A light carbon reservoir recorded in zircon-hosted diamond from the Jack Hills

Abstract

The recent discovery of diamond–graphite inclusions in the Earth’s oldest zircon grains (formed up to 4,252 Myr ago) from the Jack Hills metasediments in Western Australia1 provides a unique opportunity to investigate Earth’s earliest known carbon reservoir. Here we report ion microprobe analyses of the carbon isotope composition of these diamond–graphite inclusions. The observed δ13CPDB values (expressed using the PeeDee Belemnite standard) range between -5 per mil and -58 per mil with a median of -31 per mil. This extends beyond typical mantle values of around -6 per mil to values observed in metamorphic and some eclogitic diamonds that are interpreted to reflect deep subduction of low-δ13CPDB biogenic surface carbon. Low δ13CPDB values may also be produced by inorganic chemical reactions2, and therefore are not unambiguous evidence for life on Earth as early as 4,250 Myr ago. Regardless, our results suggest that a low-δ13CPDB reservoir may have existed on the early Earth.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: δ 13 C PDB values of diamond–graphite inclusions.

References

  1. 1

    Menneken, M., Nemchin, A. A., Geisler, T., Pidgeon, R. T. & Wilde, S. A. Hadean diamonds in zircon from Jack Hills, Western Australia. Nature 448, 917–920 (2007)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Horita, J. Some perspectives on isotope biosignatures for early life. Chem. Geol. 218, 171–196 (2005)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Harrison, T. M. et al. Heterogeneous Hadean hafnium: evidence of continental crust at 4.4 to 4.5 Ga. Science 310, 1947–1950 (2005)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Shirey, S. B., Kamber, B. S., Whitehouse, M. J., Mueller, P. A. & Basu, A. R. in When Did Plate Tectonics Start on Earth? (eds Condie, K. C. & Pease, V.) 1–29 (Special Paper 440, Geological Society of America, Boulder, Colorado, 2008)

    Google Scholar 

  5. 5

    Kramers, J. D. Hierarchical Earth accretion and the Hadean eon. J. Geol. Soc. Lond. 164, 3–17 (2007)

    CAS  Article  Google Scholar 

  6. 6

    Maas, R., Kinny, P. D., Williams, I. S., Froude, D. O. & Compston, W. The Earth's oldest known crust: A geochronological and geochemical study of 2900–4200 Ma old zircons from Mt Narryer and Jack Hills, Western Australia. Geochim. Cosmochim. Acta 56, 1281–1300 (1992)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Amelin, Y., Lee, D.-C. & Halliday, A. N. Early–middle Archaean crustal evolution deduced from Lu–Hf and U–Pb isotopic studies of single zircon grains. Geochim. Cosmochim. Acta 64, 4205–4225 (2000)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Geisler, T., Schaltegger, U. & Tomaschek, F. Re-equilibration of zircon in aqueous fluids and melts. Elements 3, 45–51 (2007)

    Article  Google Scholar 

  9. 9

    Rizvanova, N. G. et al. Zircon reaction and stability of the U-Pb isotope system during interaction with carbonate fluid: experimental hydrothermal study. Contrib. Mineral. Petrol. 139, 101–114 (2000)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Hoskin, P. W. O. & Schaltegger, U. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochem. 53, 27–62 (2003)

    CAS  Article  Google Scholar 

  11. 11

    Williams, I. S. Old diamonds and the upper crust. Nature 448, 880–881 (2007)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Hazen, R. M. & Finger, L. W. Crystal structure and compressibility of zircon at high pressure. Am. Mineral. 64, 196–201 (1979)

    CAS  Google Scholar 

  13. 13

    Kerley, G. I. & Chhabildas, L. Multicomponent-Multiphase Equation of State for Carbon. Sandia Report SAND2001–2619 (Sandia National Laboratories, Albuquerque, 2001)

    Google Scholar 

  14. 14

    Haggerty, S. E. A diamond trilogy: superplumes, supercontinents, and supernovae. Science 285, 851–860 (1999)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Cartigny, P. Stable isotopes and the origin of diamonds. Elements 1, 79–84 (2005)

    CAS  Article  Google Scholar 

  16. 16

    Heaney, P. J., Vicenzi, E. P. & De, S. Strange diamonds: The mysterious origins of carbonado and framesite. Elements 1, 85–89 (2005)

    CAS  Article  Google Scholar 

  17. 17

    Tera, F., Papanastassiou, D. A. & Wasserburg, G. J. Isotopic evidence for a terminal lunar cataclysm. Earth Planet. Sci. Lett. 22, 1–21 (1974)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Whitehouse, M. J. & Fedo, C. M. in Earth’s Oldest Rocks. Developments in Precambrian Geology Vol. 15 (eds Van Kranendonk, M. J., Smithies, R. H. & Bennett, V.) 841–853 (Elsevier, Amsterdam, 2007)

    Google Scholar 

  19. 19

    Horita, J. & Berndt, M. E. Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science 285, 1055–1057 (1999)

    CAS  Article  Google Scholar 

  20. 20

    McCollom, T. M. & Seewald, J. S. Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrothermal conditions. Earth Planet. Sci. Lett. 243, 74–84 (2006)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Benz, W., Cameron, A. G. W. & Melosh, H. J. The origin of the Moon and the single-impact hypothesis. Icarus 81, 113–131 (1989)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Canup, R. N. & Asphaug, E. Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature 412, 708–712 (2001)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Krot, A. N., Keil, K., Goodrich, C. A. & Scott, E. R. D. in Treatise on Geochemistry, Meteorites, Comets, and Planets Vol. 1 (ed. Davis, A. M.) 83–128 (Elsevier, Amsterdam, 2003)

    Google Scholar 

  24. 24

    Russell, S. S., Pillinger, C. T. & Arden, J. W. Evidence for multiple sources of diamond from primitive chondrites. Science 254, 1188–1191 (1991)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Verchovsky, A. B. et al. C, N, and noble gas isotopes in grain size separates of presolar diamonds from Efremovka. Science 21, 1165–1168 (1998)

    ADS  Article  Google Scholar 

  26. 26

    McKeegan, K. D. et al. Isotopic compositions of cometary matter returned by stardust. Science 314, 1724–1728 (2007)

    ADS  Article  Google Scholar 

  27. 27

    Schidlowski, M. A 3,800-million-year isotopic record of life from carbon in sedimentary rocks. Nature 333, 313–318 (1983)

    ADS  Article  Google Scholar 

  28. 28

    Bedard, J. H. A cathalitic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle. Geochim. Cosmochim. Acta 70, 1188–1214 (2006)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Nemchin, A. A., Pidgeon, R. T. & Whitehouse, M. J. Re-evaluation of the origin and evolution of >4.2 Ga zircons from the Jack Hills metasedimentary rocks. Earth Planet. Sci. Lett. 244, 218–233 (2006)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Harte, B., Fitzsimons, I. C. W., Harris, J. W. & Otter, M. L. Carbon isotope ratios and nitrogen abundances in relation to cathodoluminescence characteristics for some diamonds from the Kaapvaal Province, S. Africa. Mineral. Mag. 63, 829–856 (1999)

    CAS  Article  Google Scholar 

  31. 31

    Farquhar, J., Hauri, E. & Wang, J. New insights into carbon fluid chemistry and graphite precipitation: SIMS analysis of granulite facies graphite from Ponmudi, South India. Earth Planet. Sci. Lett. 171, 607–621 (1999)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the Curtin University internal research grant to A.A.N. We thank I. Fitzsimons and P. Kinny for their comments on the earlier version of the manuscript. SYNAL diamond used as a reference in this study was kindly provided by J. Craven of the Edinburgh University Ion Microprobe Facility. The Nordsim facility is operated and funded under an agreement by the joint Nordic research councils (NOS-N); this is Nordsim contribution 200.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Nemchin.

Supplementary information

Supplementary information

The file contains Supplementary Tables S1-S2 and supplementary Figures S1-S7 with Legends. Table S1 provides results of cross calibration of graphite and diamond reference materials. Table S2 analyses of all inclusions in the run order. Figures S1, S2 and S3 show cathodoluminescence images of all zircon grains containing analysed inclusions. Figure S4 shows results of cross calibration of graphite and diamond reference materials. Figure S5 showis relationship between the secondary beam intensity and the measured 13C in analysed inclusions. Figure S5 shows comparison of multiple analyses of some inclusions. Figure S6 and S7 show results of multiple analyses of inclusions in grains JH3-124 and JH3-134. (PDF 2976 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nemchin, A., Whitehouse, M., Menneken, M. et al. A light carbon reservoir recorded in zircon-hosted diamond from the Jack Hills. Nature 454, 92–95 (2008). https://doi.org/10.1038/nature07102

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing