Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument


Phyllosilicates, a class of hydrous mineral first definitively identified on Mars by the OMEGA (Observatoire pour la Mineralogie, L’Eau, les Glaces et l’Activitié) instrument1,2, preserve a record of the interaction of water with rocks on Mars. Global mapping showed that phyllosilicates are widespread but are apparently restricted to ancient terrains and a relatively narrow range of mineralogy (Fe/Mg and Al smectite clays). This was interpreted to indicate that phyllosilicate formation occurred during the Noachian (the earliest geological era of Mars), and that the conditions necessary for phyllosilicate formation (moderate to high pH and high water activity3) were specific to surface environments during the earliest era of Mars’s history4. Here we report results from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM)4 of phyllosilicate-rich regions. We expand the diversity of phyllosilicate mineralogy with the identification of kaolinite, chlorite and illite or muscovite, and a new class of hydrated silicate (hydrated silica). We observe diverse Fe/Mg-OH phyllosilicates and find that smectites such as nontronite and saponite are the most common, but chlorites are also present in some locations. Stratigraphic relationships in the Nili Fossae region show olivine-rich materials overlying phyllosilicate-bearing units, indicating the cessation of aqueous alteration before emplacement of the olivine-bearing unit. Hundreds of detections of Fe/Mg phyllosilicate in rims, ejecta and central peaks of craters in the southern highland Noachian cratered terrain indicate excavation of altered crust from depth. We also find phyllosilicate in sedimentary deposits clearly laid by water. These results point to a rich diversity of Noachian environments conducive to habitability.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: CRISM and laboratory reflectance spectra showing hydrated silicate mineral diversity.
Figure 2: Mineral diversity and stratigraphy of Mawrth Vallis.
Figure 3: Stratigraphy of phyllosilicate-bearing strata in the Nili Fossae region.
Figure 4: Phyllosilicate occurrences in the Noachian-aged southern highlands.


  1. 1

    Bibring, J. P. et al. Mars surface diversity as revealed by the OMEGA/Mars Express observations. Science 307, 1576–1581 (2005)

    ADS  Article  Google Scholar 

  2. 2

    Poulet, F. et al. Phyllosilicates on Mars and implications for early martian climate. Nature 438, 623–627 (2005)

    ADS  Article  Google Scholar 

  3. 3

    Velde, B., Righi, D., Meunier, A., Hillier, S. & Inoue, A. in Origin and Mineralogy of Clays (ed. Velde, B.) 8–42 (Springer, Berlin, 1995)

    Google Scholar 

  4. 4

    Bibring, J. P. et al. Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science 312, 400–404 (2006)

    ADS  Article  Google Scholar 

  5. 5

    Murchie, S. et al. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO). J. Geophys. Res. 112 10.1029/2006JE002682 (2007)

  6. 6

    Malin, M. C. et al. Context Camera Investigation on board the Mars Reconnaissance Orbiter. J. Geophys. Res. 112 E05S04 10.1029/2006JE002808 (2007)

    Article  Google Scholar 

  7. 7

    McEwen, A. S. et al. Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE). J. Geophys. Res. 112 E05S02 10.1029/2005JE002605 (2007)

    Article  Google Scholar 

  8. 8

    Frost, R. L., Kloprogge, J. T. & Ding, Z. Near-infrared spectroscopic study of nontronites and ferruginous smectite. Spectrochim. Acta A Mol. Biomol. Spectrosc. 58, 1657–1668 (2002)

    ADS  Article  Google Scholar 

  9. 9

    Bishop, J., Madejova, J., Komadel, P. & Froschl, H. The influence of structural Fe, Al and Mg on the infrared OH bands in spectra of dioctahedral smectites. Clay Miner. 37, 607–616 (2002)

    ADS  Article  Google Scholar 

  10. 10

    Clark, R. N., King, T. V. V., Klejwa, M., Swayze, G. A. & Vergo, N. High spectral resolution reflectance spectroscopy of minerals. J. Geophys. Res. Solid Earth Planets 95, 12653–12680 (1990)

    Article  Google Scholar 

  11. 11

    Calvin, W. M. Could Mars be dark and altered? Geophys. Res. Lett. 25, 1597–1600 (1998)

    ADS  Article  Google Scholar 

  12. 12

    Poulet, F. et al. Discovery, mapping and mineralogy of phyllosilicates on Mars by MEx-OMEGA: A reappraisal. Seventh International Conference on Mars abstract 3170 (2007)

  13. 13

    Loizeau, D. et al. Phyllosilicates in the Mawrth Vallis region of Mars. J. Geophys. Res. 112 E08S08 10.1029/2006JE002877 (2007)

    Article  Google Scholar 

  14. 14

    Michalski, J. R. & Dobrea, E. Z. N. Evidence for a sedimentary origin of clay minerals in the Mawrth Vallis region, Mars. Geology 35, 951–954 (2007)

    ADS  Article  Google Scholar 

  15. 15

    Mustard, J. F. et al. Olivine and pyroxene diversity in the crust of Mars. Science 307, 1594–1597 (2005)

    ADS  Article  Google Scholar 

  16. 16

    Hoefen, T. M. et al. Discovery of olivine in the Nili Fossae region of Mars. Science 302, 627–630 (2003)

    ADS  Article  Google Scholar 

  17. 17

    Hamilton, V. E. & Christensen, P. R. Evidence for extensive, olivine-rich bedrock on Mars. Geology 33, 433–436 (2005)

    ADS  Article  Google Scholar 

  18. 18

    Mustard, J. F. et al. Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 1. Ancient impact melt in the Isidis Basin and implications for the transition from the Noachian to Hesperian. J. Geophys. Res. 112 E08S03 10.1029/2006JE002834 (2007)

    Article  Google Scholar 

  19. 19

    Mangold, N. et al. Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 2. Aqueous alteration of the crust. J. Geophys. Res. 112 E08S04 10.1029/2006JE002835 (2007)

    Article  Google Scholar 

  20. 20

    Bishop, J. L. et al. Characterization of phyllosilicates in Libya Montes and the southern Isidis Planitia region using CRISM and HiRISE images. Seventh International Conference on Mars (Pasadena, California, abstract 3294 2007)

    Google Scholar 

  21. 21

    Costard, F. et al. Detection of hydrated minerals on fluidized ejecta lobes from OMEGA observations: implications in the history of Mars. 37th Lunar and Planetary Science Conference, Houston, Texas abstract 1288 (2006)

    Google Scholar 

  22. 22

    Grant, J. A. et al. HiRISE imaging of impact megabreccia and sub-meter aqueous strata in Holden crater, Mars. Geology 36, 195–198 (2008)

    ADS  Article  Google Scholar 

  23. 23

    Milliken, R. E. et al. Clay minerals in Holden crater as observed by MRO CRISM. 7th International Mars Conference abstract 3282 (2007)

  24. 24

    Ehlmann, B. L. et al. Clay minerals in delta deposits and organic preservation potential on Mars. Nature Geosci. 10.1038/ngeo207 (2008)

  25. 25

    Newsom, H. E. Hydrothermal alteration of impact melt sheets with implications for Mars. Icarus 44, 207–216 (1980)

    ADS  Article  Google Scholar 

  26. 26

    Rathbun, J. A. & Squyresb, S. W. Hydrothermal systems associated with Martian impact craters. Icarus 157, 362–372 (2002)

    ADS  Article  Google Scholar 

  27. 27

    Srodon, J. Nature of mixed-layer clays and mechanisms of their formation and alteration. Annu. Rev. Earth Planet. Sci. 27, 19–53 (1999)

    ADS  Article  Google Scholar 

  28. 28

    Bibring, J. P. et al. Results from the ISM Experiment. Nature 341, 591–593 (1989)

    ADS  Article  Google Scholar 

  29. 29

    Wolff, M. J. Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini-TES. J. Geophys. Res. 111 E12S17 10.1029/2006JE002786 (2006)

    ADS  Article  Google Scholar 

  30. 30

    Pelkey, S. M. et al. CRISM multispectral summary products: Parameterizing mineral diversity on Mars from reflectance. J. Geophys. Res. 112 E08S14 doi: 10.1029/2006JE002831 (2007)

    Article  Google Scholar 

  31. 31

    Poulet, F. & Erard, S. Nonlinear spectral mixing: Quantitative analysis of laboratory mineral mixtures. J. Geophys. Res. 109 E02009 doi: 10.1029/2003JE002179 (2004)

    ADS  Article  Google Scholar 

Download references


We thank the Mars Reconnaissance Orbiter team for building and operating the spacecraft and the numerous people who have contributed to the CRISM investigation. Support from NASA to the CRISM science team is gratefully acknowledged.

Author information



Corresponding author

Correspondence to John F. Mustard.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mustard, J., Murchie, S., Pelkey, S. et al. Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument. Nature 454, 305–309 (2008). https://doi.org/10.1038/nature07097

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.