Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Switch of rhodopsin expression in terminally differentiated Drosophila sensory neurons


Specificity of sensory neurons requires restricted expression of one sensory receptor gene and the exclusion of all others within a given cell. In the Drosophila retina, functional identity of photoreceptors depends on light-sensitive Rhodopsins (Rhs). The much simpler larval eye (Bolwig organ) is composed of about 12 photoreceptors, eight of which are green-sensitive (Rh6) and four blue-sensitive (Rh5)1. The larval eye becomes the adult extraretinal ‘eyelet’ composed of four green-sensitive (Rh6) photoreceptors2,3. Here we show that, during metamorphosis, all Rh6 photoreceptors die, whereas the Rh5 photoreceptors switch fate by turning off Rh5 and then turning on Rh6 expression. This switch occurs without apparent changes in the programme of transcription factors that specify larval photoreceptor subtypes. We also show that the transcription factor Senseless (Sens) mediates the very different cellular behaviours of Rh5 and Rh6 photoreceptors. Sens is restricted to Rh5 photoreceptors and must be excluded from Rh6 photoreceptors to allow them to die at metamorphosis. Finally, we show that Ecdysone receptor (EcR) functions autonomously both for the death of larval Rh6 photoreceptors and for the sensory switch of Rh5 photoreceptors to express Rh6. This fate switch of functioning, terminally differentiated neurons provides a novel, unexpected example of hard-wired sensory plasticity.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Transformation of the larval eye into the adult eyelet.
Figure 2: Larval Rh5 photoreceptors give rise to the eyelet and express Rh5 photoreceptor markers.
Figure 3: EcR expression and activity in larval photoreceptors before metamorphosis.
Figure 4: EcR is required autonomously for the fate switch of Rh5 photoreceptors and apoptosis of Rh6 photoreceptors.


  1. Sprecher, S. G., Pichaud, F. & Desplan, C. Adult and larval photoreceptors use different mechanisms to specify the same rhodopsin fates. Genes Dev. 21, 2182–2195 (2007)

    CAS  Article  Google Scholar 

  2. Helfrich-Forster, C. et al. The extraretinal eyelet of Drosophila: development, ultrastructure, and putative circadian function. J. Neurosci. 22, 9255–9266 (2002)

    Article  Google Scholar 

  3. Veleri, S., Rieger, D., Helfrich-Forster, C. & Stanewsky, R. Hofbauer-Buchner eyelet affects circadian photosensitivity and coordinates TIM and PER expression in Drosophila clock neurons. J. Biol. Rhythms 22, 29–42 (2007)

    Article  Google Scholar 

  4. Mealey-Ferrara, M. L., Montalvo, A. G. & Hall, J. C. Effects of combining a cryptochrome mutation with other visual-system variants on entrainment of locomotor and adult-emergence rhythms in Drosophila . J. Neurogenet. 17, 171–221 (2003)

    CAS  Article  Google Scholar 

  5. Malpel, S., Klarsfeld, A. & Rouyer, F. Larval optic nerve and adult extra-retinal photoreceptors sequentially associate with clock neurons during Drosophila brain development. Development 129, 1443–1453 (2002)

    CAS  Article  Google Scholar 

  6. Yasuyama, K. & Meinertzhagen, I. A. Extraretinal photoreceptors at the compound eye’s posterior margin in Drosophila melanogaster. . J. Comp. Neurol. 412, 193–202 (1999)

    CAS  Article  Google Scholar 

  7. Mazzoni, E. O., Desplan, C. & Blau, J. Circadian pacemaker neurons transmit and modulate visual information to control a rapid behavioral response. Neuron 45, 293–300 (2005)

    CAS  Article  Google Scholar 

  8. Busto, M., Iyengar, B. & Campos, A. R. Genetic dissection of behavior: modulation of locomotion by light in the Drosophila melanogaster larva requires genetically distinct visual system functions. J. Neurosci. 19, 3337–3344 (1999)

    CAS  Article  Google Scholar 

  9. Hassan, J., Iyengar, B., Scantlebury, N., Rodriguez Moncalvo, V. & Campos, A. R. Photic input pathways that mediate the Drosophila larval response to light and circadian rhythmicity are developmentally related but functionally distinct. J. Comp. Neurol. 481, 266–275 (2005)

    Article  Google Scholar 

  10. Daniel, A., Dumstrei, K., Lengyel, J. A. & Hartenstein, V. The control of cell fate in the embryonic visual system by atonal, tailless and EGFR signaling. Development 126, 2945–2954 (1999)

    CAS  Article  Google Scholar 

  11. Tahayato, A. et al. Otd/Crx, a dual regulator for the specification of ommatidia subtypes in the Drosophila retina. Dev. Cell 5, 391–402 (2003)

    CAS  Article  Google Scholar 

  12. Kimura, H. Histone dynamics in living cells revealed by photobleaching. DNA Repair 4, 939–950 (2005)

    CAS  Article  Google Scholar 

  13. Talbot, W. S., Swyryd, E. A. & Hogness, D. S. Drosophila tissues with different metamorphic responses to ecdysone express different ecdysone receptor isoforms. Cell 73, 1323–1337 (1993)

    CAS  Article  Google Scholar 

  14. Kozlova, T. & Thummel, C. S. Essential roles for ecdysone signaling during Drosophila mid-embryonic development. Science 301, 1911–1914 (2003)

    ADS  CAS  Article  Google Scholar 

  15. Devarakonda, S., Harp, J. M., Kim, Y., Ozyhar, A. & Rastinejad, F. Structure of the heterodimeric ecdysone receptor DNA-binding complex. EMBO J. 22, 5827–5840 (2003)

    CAS  Article  Google Scholar 

  16. Cheng, C. L. & Flamarique, I. N. Chromatic organization of cone photoreceptors in the retina of rainbow trout: single cones irreversibly switch from UV (SWS1) to blue (SWS2) light sensitive opsin during natural development. J. Exp. Biol. 210, 4123–4135 (2007)

    CAS  Article  Google Scholar 

  17. Cheng, C. L., Flamarique, I. N., Harosi, F. I., Rickers-Haunerland, J. & Haunerland, N. H. Photoreceptor layer of salmonid fishes: transformation and loss of single cones in juvenile fish. J. Comp. Neurol. 495, 213–235 (2006)

    Article  Google Scholar 

  18. Cheng, C. L. & Novales Flamarique, I. Opsin expression: new mechanism for modulating colour vision. Nature 428, 279 (2004)

    ADS  CAS  Article  Google Scholar 

  19. Mazzoni, E. O., Desplan, C. & Celik, A. ‘One receptor’ rules in sensory neurons. Dev. Neurosci. 26, 388–395 (2004)

    CAS  Article  Google Scholar 

  20. Applebury, M. L. et al. The murine cone photoreceptor: a single cone type expresses both S and M opsins with retinal spatial patterning. Neuron 27, 513–523 (2000)

    CAS  Article  Google Scholar 

  21. Makino, C. L. & Dodd, R. L. Multiple visual pigments in a photoreceptor of the salamander retina. J. Gen. Physiol. 108, 27–34 (1996)

    CAS  Article  Google Scholar 

  22. Xiao, M. & Hendrickson, A. Spatial and temporal expression of short, long/medium, or both opsins in human fetal cones. J. Comp. Neurol. 425, 545–559 (2000)

    CAS  Article  Google Scholar 

  23. Chandrasekaran, V. & Beckendorf, S. K. Senseless is necessary for the survival of embryonic salivary glands in Drosophila . Development 130, 4719–4728 (2003)

    CAS  Article  Google Scholar 

  24. Hock, H. et al. Intrinsic requirement for zinc finger transcription factor Gfi-1 in neutrophil differentiation. Immunity 18, 109–120 (2003)

    CAS  Article  Google Scholar 

  25. Wallis, D. et al. The zinc finger transcription factor Gfi1, implicated in lymphomagenesis, is required for inner ear hair cell differentiation and survival. Development 130, 221–232 (2003)

    CAS  Article  Google Scholar 

  26. Zheng, X. et al. TGF-β signaling activates steroid hormone receptor expression during neuronal remodeling in the Drosophila brain. Cell 112, 303–315 (2003)

    CAS  Article  Google Scholar 

  27. Kuo, C. T., Jan, L. Y. & Jan, Y. N. Dendrite-specific remodeling of Drosophila sensory neurons requires matrix metalloproteases, ubiquitin-proteasome, and ecdysone signaling. Proc. Natl Acad. Sci. USA 102, 15230–15235 (2005)

    ADS  CAS  Article  Google Scholar 

  28. Loi, P. K. & Tublitz, N. J. Hormonal control of transmitter plasticity in insect peptidergic neurons. I. Steroid regulation of the decline in cardioacceleratory peptide 2 (CAP2) expression. J. Exp. Biol. 181, 175–194 (1993)

    CAS  Article  Google Scholar 

  29. Nolo, R., Abbott, L. A. & Bellen, H. J. Senseless, a Zn finger transcription factor, is necessary and sufficient for sensory organ development in Drosophila . Cell 102, 349–362 (2000)

    CAS  Article  Google Scholar 

  30. Mikeladze-Dvali, T. et al. The growth regulators warts/lats and melted interact in a bistable loop to specify opposite fates in Drosophila R8 photoreceptors. Cell 122, 775–787 (2005)

    CAS  Article  Google Scholar 

Download references


We thank H. Bellen, A. H. Brand, S. Britt, T. Cook, the Developmental Studies Hybridoma Bank, F. Hirth, the Kyoto Stock Center, K. Matthews, M. Mlodzik, B. Mollerau, F. Pichaud, H. Reichert, C. Thummel and J. Urban for fly stocks and antibodies. We also thank J. Blau, R. J. Johnston, A. Keene and D. Vasiliauskas for discussion and comments on the manuscript. This work was funded by grant EY013010 from the National Eye Institute/National Institutes of Health to C.D., the Swiss National Science Foundation, the Novartis Foundation and the Janggen-Pöhn Stiftung (to S.G.S.) and conducted in a facility constructed with the support of a Research Facilities Improvement Grant C06 RR-15518-01 from the National Center for Research Resources, National Institutes of Health.

Author Contributions S.G.S. performed the experimental work and analysed the data. C.D. and S.G.S. designed the experiments and wrote the paper.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Claude Desplan.

Supplementary information

Supplementary Figures

The file contains Supplementary Figures S1-S2 with Legends. (PDF 2111 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sprecher, S., Desplan, C. Switch of rhodopsin expression in terminally differentiated Drosophila sensory neurons. Nature 454, 533–537 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing