Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior

Abstract

The Moon is generally thought to have formed and evolved through a single or a series of catastrophic heating events1, during which most of the highly volatile elements were lost. Hydrogen, being the lightest element, is believed to have been completely lost during this period2. Here we make use of considerable advances in secondary ion mass spectrometry3 to obtain improved limits on the indigenous volatile (CO2, H2O, F, S and Cl) contents of the most primitive basalts in the Moon—the lunar volcanic glasses. Although the pre-eruptive water content of the lunar volcanic glasses cannot be precisely constrained, numerical modelling of diffusive degassing of the very-low-Ti glasses provides a best estimate of 745 p.p.m. water, with a minimum of 260 p.p.m. at the 95 per cent confidence level. Our results indicate that, contrary to prevailing ideas, the bulk Moon might not be entirely depleted in highly volatile elements, including water. Thus, the presence of water must be considered in models constraining the Moon’s formation and its thermal and chemical evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Correlations between water and other volatile content in the lunar volcanic glasses.
Figure 2: Volatile concentration profiles from core to rim in a single bead of the very-low-Ti glasses.

Similar content being viewed by others

References

  1. Canup, R. M. Dynamics of lunar formation. Annu. Rev. Astron. Astrophys. 42, 441–475 (2004)

    Article  ADS  Google Scholar 

  2. Lucey, P. et al. in New Views of the Moon. Reviews in Mineralogy and Geochemistry Vol. 60 (eds Jolliff, B. L., Wieczorek, M. A., Shearer, C. K. & Niel, C. R.) 83–219 (Mineralogical Society of America, Chantilly, Virginia, 2006)

    Book  Google Scholar 

  3. Hauri, E. H., Gaetani, G. A. & Green, T. H. Partitioning of water during melting of the Earth’s upper mantle at H2O-undersaturated conditions. Earth Planet. Sci. Lett. 248, 715–734 (2006)

    Article  CAS  ADS  Google Scholar 

  4. Gaetani, G. A. & Grove, T. L. The influence of water on melting of mantle peridotite. Contrib. Mineral. Petrol. 131, 323–346 (1998)

    Article  CAS  ADS  Google Scholar 

  5. Hirth, G. & Kohlstedt, D. Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett. 144, 93–108 (1996)

    Article  CAS  ADS  Google Scholar 

  6. Asimow, P. D. & Langmuir, C. H. The importance of water to oceanic mantle melting regimes. Nature 421, 815–820 (2003)

    Article  CAS  ADS  Google Scholar 

  7. Wieczorek, M. A. et al. in New Views of the Moon. Reviews in Mineralogy and Geochemistry Vol. 60 (eds Jolliff, B. L., Wieczorek, M. A., Shearer, C. K. & Niel, C. R.) 221–364 (Mineralogical Society of America, Chantilly, Virginia, 2006)

    Book  Google Scholar 

  8. Epstein, S. & Taylor, H. P. The isotopic composition and concentration of water, hydrogen and carbon in some Apollo 15 and 16 soils and in the Apollo 17 orange soil. Geochim. Cosmochim. Acta 2, 1559–1575 (1973)

    CAS  Google Scholar 

  9. Gibson, E. K. & Moore, G. W. Volatile-rich lunar soil: evidence of possible cometary impact. Science 179, 69–71 (1973)

    Article  CAS  ADS  Google Scholar 

  10. Fogel, R. A. & Rutherford, M. J. Magmatic volatiles in primitive lunar glasses; I, FTIR and EPMA analyses of Apollo 15 green and yellow glasses and revision of the volatile-assisted fire-fountain theory. Geochim. Cosmochim. Acta 59, 201–215 (1995)

    Article  CAS  ADS  Google Scholar 

  11. Goldberg, R. H., Burnett, D. S. & Tombrello, T. A. in Proc. 6th Lunar Planet. Sci. Conf. Vol. 2 2189–2200 (Pergamon, New York, 1975)

    Google Scholar 

  12. Jovanovic, S. & Reed, G. W. in Proc. 6th Lunar Planet. Sci. Conf. Vol. 2 1737–1751 (Pergamon, New York, 1975)

    Google Scholar 

  13. Gibson, E. K., Brett, R. & Andrawes, F. in Proc. 8th Lunar Planet. Sci. Conf. Vol. 2 1417–1428 (Pergamon, New York, 1977)

    Google Scholar 

  14. Delano, J. W., Hanson, B. Z. & Watson, E. B. in Proc. 25th Lunar Planet. Sci. Conf. 325–326 (Lunar and Planetary Institute, Houston, 1994)

    Google Scholar 

  15. Elkins-Tanton, L. T., Chatterjee, N. & Grove, T. L. Magmatic processes that produced lunar fire fountains. Geophys. Res. Lett. 30, 20–21 (2003b)

    Article  Google Scholar 

  16. Delano, J. W. in Proc. 10th Lunar Planet. Sci. Conf. Vol. 1 275–300 (Pergamon, New York, 1979)

    Google Scholar 

  17. Delano, J. W. Pristine lunar glasses; criteria, data, and implications. J. Geophys. Res. 91, D201–D213 (1986)

    Article  CAS  ADS  Google Scholar 

  18. Shearer, C. K. et al. in New Views of the Moon. Reviews in Mineralogy and Geochemistry Vol. 60 (eds Jolliff, B. L., Wieczorek, M. A., Shearer, C. K. & Niel, C. R.) 365–518 (Mineralogical Society of America, Chantilly, Virginia, 2006)

    Book  Google Scholar 

  19. Lakatos, S., Heymann, D. & Yaniv, A. Green spherules from Apollo 15: Inferences about their origin from inert gas measurements. The Moon 7, 132–148 (1973)

    Article  ADS  Google Scholar 

  20. Eugster, O. et al. in Proc. 8th Lunar Planet. Sci. Conf. Vol. 2 3059–3082 (Pergamon, New York, 1977)

    Google Scholar 

  21. Hess, P. C. & Parmentier, E. M. A model for the thermal and chemical evolution of the Moon's interior; implications for the onset of mare volcanism. Earth Planet. Sci. Lett. 134, 501–514 (1995)

    Article  CAS  ADS  Google Scholar 

  22. Pahlevan, K. & Stevenson, D. J. Equilibration in the aftermath of the lunar-forming giant impact. Earth Planet. Sci. Lett. 262, 438–449 (2007)

    Article  CAS  ADS  Google Scholar 

  23. Bottke, W. F., Levison, H. F., Nesvorn, D. & Dones, L. Can planetesimals leftover from terrestrial planet formation produce the lunar Late Heavy Bombardment? Icarus 190, 203–223 (2007)

    Article  ADS  Google Scholar 

  24. Ryder, G. Mass flux in the ancient Earth–Moon system and benign implications for the origin of life on Earth. J. Geophys. Res. 107 5022 10.1029/2001JE001583 (2002)

    Article  Google Scholar 

  25. Cavosie, A. J., Valley, J. W., Wilde, S. A. & EIMF Magmatic δ18O in 4400–3900 Ma detrital zircons: A record of the alteration and recycling of crust in the Early Archean. Earth Planet. Sci. Lett. 235, 663–681 (2005)

    Article  CAS  ADS  Google Scholar 

  26. Wilde, S. A., Valley, J. W., Peck, W. H. & Graham, C. M. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409, 175–178 (2001)

    Article  CAS  ADS  Google Scholar 

  27. Mojzsis, S. J., Harrison, T. M. & Pidgeon, R. T. Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4,300 Myr ago. Nature 409, 178–181 (2001)

    Article  CAS  ADS  Google Scholar 

  28. Crank, J. The Mathematics of Diffusion (Oxford Univ. Press, Oxford, UK, 1975)

    MATH  Google Scholar 

  29. Shimizu, N. & Hart, S. R. Application of the ion probe to geochemistry and cosmochemistry. Annu. Rev. Earth Planet. Sci. 10, 483–526 (1982)

    Article  CAS  ADS  Google Scholar 

  30. Pouchou, J.-L. & Pichoir, F. in Electron Probe Quantitation (eds Heinrich, K. F. J. & Newberry, D. E.) 31–75 (Plenum, New York, 1991)

    Book  Google Scholar 

  31. Hauri, E. H. et al. SIMS analysis of volatiles in silicate glasses: 1. Calibration, matrix effects and comparisons with FTIR. Chem. Geol. 183, 99–114 (2002)

    Article  CAS  ADS  Google Scholar 

  32. Koga, K., Hauri, E. H., Hirschmann, M. & Bell, D. Hydrogen concentration analyses using SIMS and FTIR; comparison and calibration for nominally anhydrous minerals. Geochem. Geophys. Geosyst. 4 10.1029/2002GC000378 (2003)

  33. Aubaud, C., Hauri, E. H. & Hirschmann, M. M. Hydrogen partition coefficients between nominally anhydrous minerals and basaltic melts. Geophys. Res. Lett. 31 10.1029/2004GL021341 (2004)

Download references

Acknowledgements

We thank J. Delano for guidance on sample selection, P. Hess for exchange of ideas, M. Chaussidon, J. Longhi and T. Grove for reviews, J. Wang and J. Devine for technical assistance, and the NASA Cosmochemistry programme and the NASA Astrobiology Institute for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto E. Saal.

Supplementary information

Supplementary information

This file contains supplementary text and references, Supplementary Tables 1-5 and Supplementary Figures 1-7. (PDF 41521 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saal, A., Hauri, E., Cascio, M. et al. Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior. Nature 454, 192–195 (2008). https://doi.org/10.1038/nature07047

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07047

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing