Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Imaging stem-cell-driven regeneration in mammals

Abstract

The ability to observe biological processes continuously, instead of at discrete time points, holds great promise for the study of tissue regeneration. Ideally, single cells would be followed continuously within large tissue volumes (such as organs) over long periods of time. Technical limitations, however, preclude such studies. But, recently, there have been improvements in imaging technologies and biologically compatible labelling agents. Together with new insights into the molecular characteristics of stem cells, which are ultimately responsible for the regenerative potential of all tissues, researchers are now much closer to applying single-cell imaging approaches to research into regeneration and its clinical applications.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The need for continuous observation of dynamic cellular systems.
Figure 2: The spatiotemporal resolution of different imaging modalities.

References

  1. 1

    Yamanaka, Y., Tamplin, O. J., Beckers, A., Gossler, A. & Rossant, J. Live imaging and genetic analysis of mouse notochord formation reveals regional morphogenetic mechanisms. Dev. Cell 13, 884–896 (2007).

    CAS  Article  Google Scholar 

  2. 2

    Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Osawa, M., Hanada, K., Hamada, H. & Nakauchi, H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273, 242–245 (1996).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science 303, 359–363 (2004). This paper was the first description of non-invasive labelling of mammalian homeostatic stem cells with a fluorescent protein.

    ADS  CAS  Article  Google Scholar 

  5. 5

    Sumen, C., Mempel, T. R., Mazo, I. B. & von Andrian, U. H. Intravital microscopy: visualizing immunity in context. Immunity 21, 315–329 (2004).

    CAS  PubMed  Google Scholar 

  6. 6

    Kiel, M. J. et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

    CAS  Article  Google Scholar 

  7. 7

    Jacobs, R. E., Papan, C., Ruffins, S., Tyszka, J. M. & Fraser, S. E. MRI: volumetric imaging for vital imaging and atlas construction. Nature Rev. Mol. Cell Biol. 4, SS10–SS16 (2003).

    Google Scholar 

  8. 8

    Ntziachristos, V., Ripoll, J., Wang, L. V. & Weissleder, R. Looking and listening to light: the evolution of whole-body photonic imaging. Nature Biotechnol. 23, 313–320 (2005). This excellent review compares optical tomography with other optical imaging modalities.

    CAS  Article  Google Scholar 

  9. 9

    Tsien, R. Y. Imagining imaging's future. Nature Rev. Mol. Cell Biol. 4, SS16–SS21 (2003). This review provides a concise overview of various imaging modalities.

    Google Scholar 

  10. 10

    Lichtman, J. W. & Conchello, J. A. Fluorescence microscopy. Nature Methods 2, 910–919 (2005).

    CAS  Article  Google Scholar 

  11. 11

    Campagnola, P. J. & Loew, L. M. Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nature Biotechnol. 21, 1356–1360 (2003).

    CAS  Article  Google Scholar 

  12. 12

    Hoebe, R. A. et al. Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging. Nature Biotechnol. 25, 249–253 (2007).

    CAS  Article  Google Scholar 

  13. 13

    Verveer, P. J. et al. High-resolution three-dimensional imaging of large specimens with light sheet-based microscopy. Nature Methods 4, 311–313 (2007).

    CAS  Article  Google Scholar 

  14. 14

    Vinegoni, C., Pitsouli, C., Razansky, D., Perrimon, N. & Ntziachristos, V. In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography. Nature Methods 5, 45–47 (2008).

    CAS  Article  Google Scholar 

  15. 15

    Zacharakis, G. et al. Volumetric tomography of fluorescent proteins through small animals in vivo. Proc. Natl Acad. Sci. USA 102, 18252–18257 (2005).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Cao, Y. A. et al. Shifting foci of hematopoiesis during reconstitution from single stem cells. Proc. Natl Acad. Sci. USA 101, 221–226 (2004).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Wood, K. V., Lam, Y. A., Seliger, H. H. & McElroy, W. D. Complementary DNA coding click beetle luciferases can elicit bioluminescence of different colors. Science 244, 700–702 (1989).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Sumner, J. P., Conroy, R., Shapiro, E. M., Moreland, J. & Koretsky, A. P. Delivery of fluorescent probes using iron oxide particles as carriers enables in-vivo labeling of migrating neural precursors for magnetic resonance imaging and optical imaging. J. Biomed. Opt. 12, 051504 (2007).

    ADS  Article  Google Scholar 

  19. 19

    Shapiro, E. M., Sharer, K., Skrtic, S. & Koretsky, A. P. In vivo detection of single cells by MRI. Magn. Reson. Med. 55, 242–249 (2006).

    Article  Google Scholar 

  20. 20

    Ponomarev, V. et al. A novel triple-modality reporter gene for whole-body fluorescent, bioluminescent, and nuclear noninvasive imaging. Eur. J. Nucl. Med. Mol. Imaging 31, 740–751 (2004).

    CAS  Article  Google Scholar 

  21. 21

    Ray, P., Tsien, R. & Gambhir, S. S. Construction and validation of improved triple fusion reporter gene vectors for molecular imaging of living subjects. Cancer Res. 67, 3085–3093 (2007).

    CAS  Article  Google Scholar 

  22. 22

    Sosnovik, D. E. et al. Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo. Circulation 115, 1384–1391 (2007).

    Article  Google Scholar 

  23. 23

    Giepmans, B. N., Adams, S. R., Ellisman, M. H. & Tsien, R. Y. The fluorescent toolbox for assessing protein location and function. Science 312, 217–224 (2006). This review provides a comprehensive description of the various possibilities for fluorescent labelling of cells.

    ADS  CAS  Article  Google Scholar 

  24. 24

    Shimomura, O., Johnson, F. H. & Saiga, Y. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J. Cell. Comp. Physiol. 59, 223–239 (1962).

    CAS  Article  Google Scholar 

  25. 25

    Matz, M. V., Lukyanov, K. A. & Lukyanov, S. A. Family of the green fluorescent protein: journey to the end of the rainbow. Bioessays 24, 953–959 (2002).

    CAS  Article  Google Scholar 

  26. 26

    Shaner, N. C., Steinbach, P. A. & Tsien, R. Y. A guide to choosing fluorescent proteins. Nature Methods 2, 905–909 (2005).

    CAS  Article  Google Scholar 

  27. 27

    Ai, H. W., Shaner, N. C., Cheng, Z., Tsien, R. Y. & Campbell, R. E. Exploration of new chromophore structures leads to the identification of improved blue fluorescent proteins. Biochemistry 46, 5904–5910 (2007).

    CAS  Article  Google Scholar 

  28. 28

    Nagai, T. et al. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nature Biotechnol. 20, 87–90 (2002).

    CAS  Article  Google Scholar 

  29. 29

    Shcherbo, D. et al. Bright far-red fluorescent protein for whole-body imaging. Nature Methods 4, 741–746 (2007).

    CAS  Article  Google Scholar 

  30. 30

    Okita, C., Sato, M. & Schroeder, T. Generation of optimized yellow and red fluorescent proteins with distinct subcellular localization. Biotechniques 36, 418–422 (2004).

    CAS  Article  Google Scholar 

  31. 31

    Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T. & Nishimune, Y. 'Green mice' as a source of ubiquitous green cells. FEBS Lett. 407, 313–319 (1997).

    CAS  Article  Google Scholar 

  32. 32

    Tao, W. et al. Enhanced green fluorescent protein is a nearly ideal long-term expression tracer for hematopoietic stem cells, whereas DsRed-Express fluorescent protein is not. Stem Cells 25, 670–678 (2007). This paper describes a comprehensive quantitative study of the effects of DsRed-Express on the long-term behaviour of stem cells.

    CAS  Article  Google Scholar 

  33. 33

    Vintersten, K. et al. Mouse in red: red fluorescent protein expression in mouse ES cells, embryos, and adult animals. Genesis 40, 241–246 (2004).

    CAS  Article  Google Scholar 

  34. 34

    Hadjantonakis, A. K., Macmaster, S. & Nagy, A. Embryonic stem cells and mice expressing different GFP variants for multiple non-invasive reporter usage within a single animal. BMC Biotechnol. 2, 11 (2002).

    Article  Google Scholar 

  35. 35

    Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007).

    ADS  CAS  Article  Google Scholar 

  36. 36

    Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 4 (2001).

    CAS  Article  Google Scholar 

  37. 37

    Ueno, H. & Weissman, I. L. Clonal analysis of mouse development reveals a polyclonal origin for yolk sac blood islands. Dev. Cell 11, 519–533 (2006).

    CAS  Article  Google Scholar 

  38. 38

    Takayanagi, S. et al. Genetic marking of hematopoietic stem and endothelial cells: identification of the Tmtsp gene encoding a novel cell surface protein with the thrombospondin-1 domain. Blood 107, 4317–4325 (2006).

    CAS  Article  Google Scholar 

  39. 39

    Long, J. Z., Lackan, C. S. & Hadjantonakis, A. K. Genetic and spectrally distinct in vivo imaging: embryonic stem cells and mice with widespread expression of a monomeric red fluorescent protein. BMC Biotechnol. 5, 20 (2005).

    Article  Google Scholar 

  40. 40

    Kelly, K. A., Carson, J., McCarthy, J. R. & Weissleder, R. Novel peptide sequence ('IQ-tag') with high affinity for NIR fluorochromes allows protein and cell specific labeling for in vivo imaging. PLoS ONE 2, e665 (2007).

    ADS  Article  Google Scholar 

  41. 41

    Fernandez-Suarez, M. et al. Redirecting lipoic acid ligase for cell surface protein labeling with small-molecule probes. Nature Biotechnol. 25, 1483–1487 (2007).

    CAS  Article  Google Scholar 

  42. 42

    Tannous, B. A. et al. Metabolic biotinylation of cell surface receptors for in vivo imaging. Nature Methods 3, 391–396 (2006).

    CAS  Article  Google Scholar 

  43. 43

    Gao, W., Xing, B., Tsien, R. Y. & Rao, J. Novel fluorogenic substrates for imaging β-lactamase gene expression. J. Am. Chem. Soc. 125, 11146–11147 (2003).

    CAS  Article  Google Scholar 

  44. 44

    Josserand, V., Texier-Nogues, I., Huber, P., Favrot, M. C. & Coll, J. L. Non-invasive in vivo optical imaging of the lacZ and luc gene expression in mice. Gene Ther. 14, 1587–1593 (2007).

    CAS  Article  Google Scholar 

  45. 45

    Naik, S. & Piwnica-Worms, D. Real-time imaging of β-catenin dynamics in cells and living mice. Proc. Natl Acad. Sci. USA 104, 17465–17470 (2007).

    ADS  CAS  Article  Google Scholar 

  46. 46

    Cohen, B. et al. MRI detection of transcriptional regulation of gene expression in transgenic mice. Nature Med. 13, 498–503 (2007).

    ADS  CAS  Article  Google Scholar 

  47. 47

    Alivisatos, P. The use of nanocrystals in biological detection. Nature Biotechnol. 22, 47–52 (2004).

    CAS  Article  Google Scholar 

  48. 48

    Swirski, F. K. et al. A near-infrared cell tracker reagent for multiscopic in vivo imaging and quantification of leukocyte immune responses. PLoS ONE 2, e1075 (2007).

    ADS  Article  Google Scholar 

  49. 49

    Lidke, D. S. et al. Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nature Biotechnol. 22, 198–203 (2004).

    CAS  Article  Google Scholar 

  50. 50

    Slotkin, J. R. et al. In vivo quantum dot labeling of mammalian stem and progenitor cells. Dev. Dyn. 236, 3393–3401 (2007).

    CAS  Article  Google Scholar 

  51. 51

    Zhang, Q., Cao, Y. Q. & Tsien, R. W. Quantum dots provide an optical signal specific to full collapse fusion of synaptic vesicles. Proc. Natl Acad. Sci. USA 104, 17843–17848 (2007).

    ADS  CAS  Article  Google Scholar 

  52. 52

    Bonasio, R. et al. Specific and covalent labeling of a membrane protein with organic fluorochromes and quantum dots. Proc. Natl Acad. Sci. USA 104, 14753–14758 (2007).

    ADS  CAS  Article  Google Scholar 

  53. 53

    Megason, S. G. & Fraser, S. E. Imaging in systems biology. Cell 130, 784–795 (2007).

    CAS  Article  Google Scholar 

  54. 54

    Megason, S. G. & Fraser, S. E. Digitizing life at the level of the cell: high-performance laser-scanning microscopy and image analysis for in toto imaging of development. Mech. Dev. 120, 1407–1420 (2003).

    CAS  Article  Google Scholar 

  55. 55

    Glauche, I., Cross, M., Loeffler, M. & Roeder, I. Lineage specification of hematopoietic stem cells: mathematical modeling and biological implications. Stem Cells 25, 1791–1799 (2007).

    CAS  Article  Google Scholar 

  56. 56

    Ebert, S. N. et al. Noninvasive tracking of cardiac embryonic stem cells in vivo using magnetic resonance imaging techniques. Stem Cells 25, 2936–2944 (2007).

    Article  Google Scholar 

  57. 57

    Laflamme, M. A. et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotechnol. 25, 1015–1024 (2007).

    CAS  Article  Google Scholar 

  58. 58

    van Laake, L. W. et al. Monitoring of cell therapy and assessment of cardiac function using magnetic resonance imaging in a mouse model of myocardial infarction. Nature Protocols 2, 2551–2567 (2007).

    CAS  Article  Google Scholar 

  59. 59

    Peault, B. et al. Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Mol. Ther. 15, 867–877 (2007).

    CAS  Article  Google Scholar 

  60. 60

    Kuang, S., Kuroda, K., Le Grand, F. & Rudnicki, M. A. Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 129, 999–1010 (2007).

    CAS  Article  Google Scholar 

  61. 61

    Shinin, V., Gayraud-Morel, B., Gomes, D. & Tajbakhsh, S. Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells. Nature Cell Biol. 8, 677–687 (2006).

    CAS  Article  Google Scholar 

  62. 62

    Fuchs, E. Scratching the surface of skin development. Nature 445, 834–842 (2007).

    ADS  CAS  Article  Google Scholar 

  63. 63

    Ro, S. & Rannala, B. A stop-EGFP transgenic mouse to detect clonal cell lineages generated by mutation. EMBO Rep. 5, 914–920 (2004).

    CAS  Article  Google Scholar 

  64. 64

    Junt, T. et al. Dynamic visualization of thrombopoiesis within bone marrow. Science 317, 1767–1770 (2007).

    ADS  CAS  Article  Google Scholar 

  65. 65

    Sipkins, D. A. et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 435, 969–973 (2005). This study is an excellent example of imaging of the bone marrow of a live mouse by using time-lapse multiphoton microscopy.

    ADS  CAS  Article  Google Scholar 

  66. 66

    Suzuki, N. et al. Combinatorial Gata2 and Sca1 expression defines hematopoietic stem cells in the bone marrow niche. Proc. Natl Acad. Sci. USA 103, 2202–2207 (2006).

    ADS  CAS  Article  Google Scholar 

  67. 67

    Schroeder, T. Tracking hematopoiesis at the single cell level. Ann. NY Acad. Sci. 1044, 201–209 (2005).

    ADS  Article  Google Scholar 

  68. 68

    Heck, S. et al. Distinguishable live erythroid and myeloid cells in β-globin ECFP × lysozyme EGFP mice. Blood 101, 903–906 (2003).

    CAS  Article  Google Scholar 

  69. 69

    Merkle, F. T., Mirzadeh, Z. & Alvarez-Buylla, A. Mosaic organization of neural stem cells in the adult brain. Science 317, 381–384 (2007).

    ADS  CAS  Article  Google Scholar 

  70. 70

    Miyata, T., Kawaguchi, A., Okano, H. & Ogawa, M. Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31, 727–741 (2001).

    CAS  Article  Google Scholar 

  71. 71

    Yokota, Y. et al. Radial glial dependent and independent dynamics of interneuronal migration in the developing cerebral cortex. PLoS ONE 2, e794 (2007).

    ADS  Article  Google Scholar 

  72. 72

    Gobel, W., Kampa, B. M. & Helmchen, F. Imaging cellular network dynamics in three dimensions using fast 3D laser scanning. Nature Methods 4, 73–79 (2007).

    Article  Google Scholar 

  73. 73

    Manganas, L. N. et al. Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain. Science 318, 980–985 (2007).

    ADS  CAS  Article  Google Scholar 

  74. 74

    Mizrahi, A. Dendritic development and plasticity of adult-born neurons in the mouse olfactory bulb. Nature Neurosci. 10, 444–452 (2007).

    CAS  Article  Google Scholar 

  75. 75

    Conchello, J. A. & Lichtman, J. W. Optical sectioning microscopy. Nature Methods 2, 920–931 (2005).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

I apologize to colleagues whose work could not be cited because of space constraints. I thank V. Ntzachristos, L. Godinho and M. Sixt for discussions, and M. A. Rieger, A. IJpenberg and E. Drew for critical reading of the manuscript. This work was financed in part by the German Research Foundation (DFG).

Author information

Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Additional information

Correspondence should be addressed to the author (timm.schroeder@helmholtz-muenchen.de).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schroeder, T. Imaging stem-cell-driven regeneration in mammals. Nature 453, 345–351 (2008). https://doi.org/10.1038/nature07043

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing