Imaging stem-cell-driven regeneration in mammals

Abstract

The ability to observe biological processes continuously, instead of at discrete time points, holds great promise for the study of tissue regeneration. Ideally, single cells would be followed continuously within large tissue volumes (such as organs) over long periods of time. Technical limitations, however, preclude such studies. But, recently, there have been improvements in imaging technologies and biologically compatible labelling agents. Together with new insights into the molecular characteristics of stem cells, which are ultimately responsible for the regenerative potential of all tissues, researchers are now much closer to applying single-cell imaging approaches to research into regeneration and its clinical applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The need for continuous observation of dynamic cellular systems.
Figure 2: The spatiotemporal resolution of different imaging modalities.

References

  1. 1

    Yamanaka, Y., Tamplin, O. J., Beckers, A., Gossler, A. & Rossant, J. Live imaging and genetic analysis of mouse notochord formation reveals regional morphogenetic mechanisms. Dev. Cell 13, 884–896 (2007).

  2. 2

    Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).

  3. 3

    Osawa, M., Hanada, K., Hamada, H. & Nakauchi, H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273, 242–245 (1996).

  4. 4

    Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science 303, 359–363 (2004). This paper was the first description of non-invasive labelling of mammalian homeostatic stem cells with a fluorescent protein.

  5. 5

    Sumen, C., Mempel, T. R., Mazo, I. B. & von Andrian, U. H. Intravital microscopy: visualizing immunity in context. Immunity 21, 315–329 (2004).

  6. 6

    Kiel, M. J. et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

  7. 7

    Jacobs, R. E., Papan, C., Ruffins, S., Tyszka, J. M. & Fraser, S. E. MRI: volumetric imaging for vital imaging and atlas construction. Nature Rev. Mol. Cell Biol. 4, SS10–SS16 (2003).

  8. 8

    Ntziachristos, V., Ripoll, J., Wang, L. V. & Weissleder, R. Looking and listening to light: the evolution of whole-body photonic imaging. Nature Biotechnol. 23, 313–320 (2005). This excellent review compares optical tomography with other optical imaging modalities.

  9. 9

    Tsien, R. Y. Imagining imaging's future. Nature Rev. Mol. Cell Biol. 4, SS16–SS21 (2003). This review provides a concise overview of various imaging modalities.

  10. 10

    Lichtman, J. W. & Conchello, J. A. Fluorescence microscopy. Nature Methods 2, 910–919 (2005).

  11. 11

    Campagnola, P. J. & Loew, L. M. Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nature Biotechnol. 21, 1356–1360 (2003).

  12. 12

    Hoebe, R. A. et al. Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging. Nature Biotechnol. 25, 249–253 (2007).

  13. 13

    Verveer, P. J. et al. High-resolution three-dimensional imaging of large specimens with light sheet-based microscopy. Nature Methods 4, 311–313 (2007).

  14. 14

    Vinegoni, C., Pitsouli, C., Razansky, D., Perrimon, N. & Ntziachristos, V. In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography. Nature Methods 5, 45–47 (2008).

  15. 15

    Zacharakis, G. et al. Volumetric tomography of fluorescent proteins through small animals in vivo. Proc. Natl Acad. Sci. USA 102, 18252–18257 (2005).

  16. 16

    Cao, Y. A. et al. Shifting foci of hematopoiesis during reconstitution from single stem cells. Proc. Natl Acad. Sci. USA 101, 221–226 (2004).

  17. 17

    Wood, K. V., Lam, Y. A., Seliger, H. H. & McElroy, W. D. Complementary DNA coding click beetle luciferases can elicit bioluminescence of different colors. Science 244, 700–702 (1989).

  18. 18

    Sumner, J. P., Conroy, R., Shapiro, E. M., Moreland, J. & Koretsky, A. P. Delivery of fluorescent probes using iron oxide particles as carriers enables in-vivo labeling of migrating neural precursors for magnetic resonance imaging and optical imaging. J. Biomed. Opt. 12, 051504 (2007).

  19. 19

    Shapiro, E. M., Sharer, K., Skrtic, S. & Koretsky, A. P. In vivo detection of single cells by MRI. Magn. Reson. Med. 55, 242–249 (2006).

  20. 20

    Ponomarev, V. et al. A novel triple-modality reporter gene for whole-body fluorescent, bioluminescent, and nuclear noninvasive imaging. Eur. J. Nucl. Med. Mol. Imaging 31, 740–751 (2004).

  21. 21

    Ray, P., Tsien, R. & Gambhir, S. S. Construction and validation of improved triple fusion reporter gene vectors for molecular imaging of living subjects. Cancer Res. 67, 3085–3093 (2007).

  22. 22

    Sosnovik, D. E. et al. Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo. Circulation 115, 1384–1391 (2007).

  23. 23

    Giepmans, B. N., Adams, S. R., Ellisman, M. H. & Tsien, R. Y. The fluorescent toolbox for assessing protein location and function. Science 312, 217–224 (2006). This review provides a comprehensive description of the various possibilities for fluorescent labelling of cells.

  24. 24

    Shimomura, O., Johnson, F. H. & Saiga, Y. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J. Cell. Comp. Physiol. 59, 223–239 (1962).

  25. 25

    Matz, M. V., Lukyanov, K. A. & Lukyanov, S. A. Family of the green fluorescent protein: journey to the end of the rainbow. Bioessays 24, 953–959 (2002).

  26. 26

    Shaner, N. C., Steinbach, P. A. & Tsien, R. Y. A guide to choosing fluorescent proteins. Nature Methods 2, 905–909 (2005).

  27. 27

    Ai, H. W., Shaner, N. C., Cheng, Z., Tsien, R. Y. & Campbell, R. E. Exploration of new chromophore structures leads to the identification of improved blue fluorescent proteins. Biochemistry 46, 5904–5910 (2007).

  28. 28

    Nagai, T. et al. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nature Biotechnol. 20, 87–90 (2002).

  29. 29

    Shcherbo, D. et al. Bright far-red fluorescent protein for whole-body imaging. Nature Methods 4, 741–746 (2007).

  30. 30

    Okita, C., Sato, M. & Schroeder, T. Generation of optimized yellow and red fluorescent proteins with distinct subcellular localization. Biotechniques 36, 418–422 (2004).

  31. 31

    Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T. & Nishimune, Y. 'Green mice' as a source of ubiquitous green cells. FEBS Lett. 407, 313–319 (1997).

  32. 32

    Tao, W. et al. Enhanced green fluorescent protein is a nearly ideal long-term expression tracer for hematopoietic stem cells, whereas DsRed-Express fluorescent protein is not. Stem Cells 25, 670–678 (2007). This paper describes a comprehensive quantitative study of the effects of DsRed-Express on the long-term behaviour of stem cells.

  33. 33

    Vintersten, K. et al. Mouse in red: red fluorescent protein expression in mouse ES cells, embryos, and adult animals. Genesis 40, 241–246 (2004).

  34. 34

    Hadjantonakis, A. K., Macmaster, S. & Nagy, A. Embryonic stem cells and mice expressing different GFP variants for multiple non-invasive reporter usage within a single animal. BMC Biotechnol. 2, 11 (2002).

  35. 35

    Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007).

  36. 36

    Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 4 (2001).

  37. 37

    Ueno, H. & Weissman, I. L. Clonal analysis of mouse development reveals a polyclonal origin for yolk sac blood islands. Dev. Cell 11, 519–533 (2006).

  38. 38

    Takayanagi, S. et al. Genetic marking of hematopoietic stem and endothelial cells: identification of the Tmtsp gene encoding a novel cell surface protein with the thrombospondin-1 domain. Blood 107, 4317–4325 (2006).

  39. 39

    Long, J. Z., Lackan, C. S. & Hadjantonakis, A. K. Genetic and spectrally distinct in vivo imaging: embryonic stem cells and mice with widespread expression of a monomeric red fluorescent protein. BMC Biotechnol. 5, 20 (2005).

  40. 40

    Kelly, K. A., Carson, J., McCarthy, J. R. & Weissleder, R. Novel peptide sequence ('IQ-tag') with high affinity for NIR fluorochromes allows protein and cell specific labeling for in vivo imaging. PLoS ONE 2, e665 (2007).

  41. 41

    Fernandez-Suarez, M. et al. Redirecting lipoic acid ligase for cell surface protein labeling with small-molecule probes. Nature Biotechnol. 25, 1483–1487 (2007).

  42. 42

    Tannous, B. A. et al. Metabolic biotinylation of cell surface receptors for in vivo imaging. Nature Methods 3, 391–396 (2006).

  43. 43

    Gao, W., Xing, B., Tsien, R. Y. & Rao, J. Novel fluorogenic substrates for imaging β-lactamase gene expression. J. Am. Chem. Soc. 125, 11146–11147 (2003).

  44. 44

    Josserand, V., Texier-Nogues, I., Huber, P., Favrot, M. C. & Coll, J. L. Non-invasive in vivo optical imaging of the lacZ and luc gene expression in mice. Gene Ther. 14, 1587–1593 (2007).

  45. 45

    Naik, S. & Piwnica-Worms, D. Real-time imaging of β-catenin dynamics in cells and living mice. Proc. Natl Acad. Sci. USA 104, 17465–17470 (2007).

  46. 46

    Cohen, B. et al. MRI detection of transcriptional regulation of gene expression in transgenic mice. Nature Med. 13, 498–503 (2007).

  47. 47

    Alivisatos, P. The use of nanocrystals in biological detection. Nature Biotechnol. 22, 47–52 (2004).

  48. 48

    Swirski, F. K. et al. A near-infrared cell tracker reagent for multiscopic in vivo imaging and quantification of leukocyte immune responses. PLoS ONE 2, e1075 (2007).

  49. 49

    Lidke, D. S. et al. Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nature Biotechnol. 22, 198–203 (2004).

  50. 50

    Slotkin, J. R. et al. In vivo quantum dot labeling of mammalian stem and progenitor cells. Dev. Dyn. 236, 3393–3401 (2007).

  51. 51

    Zhang, Q., Cao, Y. Q. & Tsien, R. W. Quantum dots provide an optical signal specific to full collapse fusion of synaptic vesicles. Proc. Natl Acad. Sci. USA 104, 17843–17848 (2007).

  52. 52

    Bonasio, R. et al. Specific and covalent labeling of a membrane protein with organic fluorochromes and quantum dots. Proc. Natl Acad. Sci. USA 104, 14753–14758 (2007).

  53. 53

    Megason, S. G. & Fraser, S. E. Imaging in systems biology. Cell 130, 784–795 (2007).

  54. 54

    Megason, S. G. & Fraser, S. E. Digitizing life at the level of the cell: high-performance laser-scanning microscopy and image analysis for in toto imaging of development. Mech. Dev. 120, 1407–1420 (2003).

  55. 55

    Glauche, I., Cross, M., Loeffler, M. & Roeder, I. Lineage specification of hematopoietic stem cells: mathematical modeling and biological implications. Stem Cells 25, 1791–1799 (2007).

  56. 56

    Ebert, S. N. et al. Noninvasive tracking of cardiac embryonic stem cells in vivo using magnetic resonance imaging techniques. Stem Cells 25, 2936–2944 (2007).

  57. 57

    Laflamme, M. A. et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotechnol. 25, 1015–1024 (2007).

  58. 58

    van Laake, L. W. et al. Monitoring of cell therapy and assessment of cardiac function using magnetic resonance imaging in a mouse model of myocardial infarction. Nature Protocols 2, 2551–2567 (2007).

  59. 59

    Peault, B. et al. Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Mol. Ther. 15, 867–877 (2007).

  60. 60

    Kuang, S., Kuroda, K., Le Grand, F. & Rudnicki, M. A. Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 129, 999–1010 (2007).

  61. 61

    Shinin, V., Gayraud-Morel, B., Gomes, D. & Tajbakhsh, S. Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells. Nature Cell Biol. 8, 677–687 (2006).

  62. 62

    Fuchs, E. Scratching the surface of skin development. Nature 445, 834–842 (2007).

  63. 63

    Ro, S. & Rannala, B. A stop-EGFP transgenic mouse to detect clonal cell lineages generated by mutation. EMBO Rep. 5, 914–920 (2004).

  64. 64

    Junt, T. et al. Dynamic visualization of thrombopoiesis within bone marrow. Science 317, 1767–1770 (2007).

  65. 65

    Sipkins, D. A. et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 435, 969–973 (2005). This study is an excellent example of imaging of the bone marrow of a live mouse by using time-lapse multiphoton microscopy.

  66. 66

    Suzuki, N. et al. Combinatorial Gata2 and Sca1 expression defines hematopoietic stem cells in the bone marrow niche. Proc. Natl Acad. Sci. USA 103, 2202–2207 (2006).

  67. 67

    Schroeder, T. Tracking hematopoiesis at the single cell level. Ann. NY Acad. Sci. 1044, 201–209 (2005).

  68. 68

    Heck, S. et al. Distinguishable live erythroid and myeloid cells in β-globin ECFP × lysozyme EGFP mice. Blood 101, 903–906 (2003).

  69. 69

    Merkle, F. T., Mirzadeh, Z. & Alvarez-Buylla, A. Mosaic organization of neural stem cells in the adult brain. Science 317, 381–384 (2007).

  70. 70

    Miyata, T., Kawaguchi, A., Okano, H. & Ogawa, M. Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31, 727–741 (2001).

  71. 71

    Yokota, Y. et al. Radial glial dependent and independent dynamics of interneuronal migration in the developing cerebral cortex. PLoS ONE 2, e794 (2007).

  72. 72

    Gobel, W., Kampa, B. M. & Helmchen, F. Imaging cellular network dynamics in three dimensions using fast 3D laser scanning. Nature Methods 4, 73–79 (2007).

  73. 73

    Manganas, L. N. et al. Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain. Science 318, 980–985 (2007).

  74. 74

    Mizrahi, A. Dendritic development and plasticity of adult-born neurons in the mouse olfactory bulb. Nature Neurosci. 10, 444–452 (2007).

  75. 75

    Conchello, J. A. & Lichtman, J. W. Optical sectioning microscopy. Nature Methods 2, 920–931 (2005).

Download references

Acknowledgements

I apologize to colleagues whose work could not be cited because of space constraints. I thank V. Ntzachristos, L. Godinho and M. Sixt for discussions, and M. A. Rieger, A. IJpenberg and E. Drew for critical reading of the manuscript. This work was financed in part by the German Research Foundation (DFG).

Author information

Ethics declarations

Competing interests

The author declares no competing financial interests.

Additional information

Correspondence should be addressed to the author (timm.schroeder@helmholtz-muenchen.de).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schroeder, T. Imaging stem-cell-driven regeneration in mammals. Nature 453, 345–351 (2008) doi:10.1038/nature07043

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.