Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Wound repair and regeneration

Abstract

The repair of wounds is one of the most complex biological processes that occur during human life. After an injury, multiple biological pathways immediately become activated and are synchronized to respond. In human adults, the wound repair process commonly leads to a non-functioning mass of fibrotic tissue known as a scar. By contrast, early in gestation, injured fetal tissues can be completely recreated, without fibrosis, in a process resembling regeneration. Some organisms, however, retain the ability to regenerate tissue throughout adult life. Knowledge gained from studying such organisms might help to unlock latent regenerative pathways in humans, which would change medical practice as much as the introduction of antibiotics did in the twentieth century.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Classic stages of wound repair.
Figure 2: Wound re-epithelialization.
Figure 3: Epithelial stem-cell-mediated skin regeneration.
Figure 4: Potential therapies for reducing scar formation during wound repair.

References

  1. Singer, A. J. & Clark, R. A. Cutaneous wound healing. N. Engl. J. Med. 341, 738–746 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Aarabi, S., Longaker, M. T. & Gurtner, G. C. Hypertrophic scar formation following burns and trauma: new approaches to treatment. PLoS Med. 4, e234 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Konigova, R. & Rychterova, V. Marjolin's ulcer. Acta Chir. Plast. 42, 91–94 (2000).

    CAS  PubMed  Google Scholar 

  4. Trent, J. T. & Kirsner, R. S. Wounds and malignancy. Adv. Skin Wound Care 16, 31–34 (2003).

    Article  PubMed  Google Scholar 

  5. Colwell, A. S., Longaker, M. T. & Lorenz, H. P. Fetal wound healing. Front. Biosci. 8, s1240–s1248 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Gurtner, G. C., Callaghan, M. J. & Longaker, M. T. Progress and potential for regenerative medicine. Annu. Rev. Med. 58, 299–312 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. National Heart, Lung, and Blood Institute. Morbidity & Mortality: 2002 Chart Book on Cardiovascular, Lung, and Blood Diseases (US Department of Health and Human Services, Bethesda, 2002).

  8. Anderson, R. N. & Smith, B. L. Deaths: leading causes for 2001. Natl Vital Stat. Rep. 52 (9), 1–85 (2003).

    PubMed  Google Scholar 

  9. Selman, M., King, T. E. & Pardo, A. Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann. Intern. Med. 134, 136–151 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Mescher, A. L. & Neff, A. W. Regenerative capacity and the developing immune system. Adv. Biochem. Eng. Biotechnol. 93, 39–66 (2005).

    CAS  PubMed  Google Scholar 

  11. Klein, L. et al. Pharmacologic therapy for patients with chronic heart failure and reduced systolic function: review of trials and practical considerations. Am. J. Cardiol. 91, 18F–40F (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Nichols, S. A., Dirks, W., Pearse, J. S. & King, N. Early evolution of animal cell signaling and adhesion genes. Proc. Natl Acad. Sci.USA 103, 12451–12456 (2006).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Adamska, M. et al. The evolutionary origin of hedgehog proteins. Curr. Biol. 17, R836–R837 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Adamska, M. et al. Wnt and TGF-β expression in the sponge Amphimedon queenslandica and the origin of metazoan embryonic patterning. PLoS ONE 2, e1031 (2007).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  15. Adamska, M. et al. The evolutionary origin of hedgehog proteins. Curr. Biol. 17, R836–R837 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Woolner, S., Jacinto, A. & Martin, P. The small GTPase Rac plays multiple roles in epithelial sheet fusion — dynamic studies of Drosophila dorsal closure. Dev. Biol. 282, 163–173 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Samakovlis, C. et al. Genetic control of epithelial tube fusion during Drosophila tracheal development. Development 122, 3531–3536 (1996).This paper shows that the molecular machinery involved in dorsal closure in D. melanogaster embryos is also used during wound closure.

    Article  CAS  PubMed  Google Scholar 

  18. Wood, W. et al. Wound healing recapitulates morphogenesis in Drosophila embryos. Nature Cell Biol. 4, 907–912 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Woolley, K. & Martin, P. Conserved mechanisms of repair: from damaged single cells to wounds in multicellular tissues. Bioessays 22, 911–919 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Martin, P. & Parkhurst, S. M. Parallels between tissue repair and embryo morphogenesis. Development 131, 3021–3034 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Suzuki, M., Satoh, A., Ide, H. & Tamura, K. Nerve-dependent and -independent events in blastema formation during Xenopus froglet limb regeneration. Dev. Biol. 286, 361–375 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Brockes, J. P. & Kumar, A. Plasticity and reprogramming of differentiated cells in amphibian regeneration. Nature Rev. Mol. Cell Biol. 3, 566–574 (2002).

    Article  CAS  Google Scholar 

  23. Endo, T., Bryant, S. V. & Gardiner, D. M. A stepwise model system for limb regeneration. Dev. Biol. 270, 135–145 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Kumar, A., Godwin, J. W., Gates, P. B., Garza-Garcia, A. A. & Brockes, J. P. Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate. Science 318, 772–777 (2007). This study found that the nerve dependence of limb regeneration results from nerves producing the protein nAG, which is a ligand for Prod 1 at the surface of blastemal cells, stimulating their proliferation.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ánchez Alvarado, A. Planarian regeneration: its end is its beginning. Cell 124, 241–245 (2006).

    Article  CAS  Google Scholar 

  26. Klapka, N. & Müller, H. W. Collagen matrix in spinal cord injury. J. Neurotrauma 23, 422 (2006).

    Article  PubMed  Google Scholar 

  27. Stichel, C. C. & Müller, H. W. The CNS lesion scar: new vistas on an old regeneration barrier. Cell Tissue Res. 294, 1–9 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Grose, R. & Werner, S. Wound-healing studies in transgenic and knockout mice. Mol. Biotechnol. 28, 147–166 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Martin, P. & Leibovich, S. J. Inflammatory cells during wound repair: the good, the bad and the ugly. Trends Cell Biol. 15, 599–607 (2005). This review comprehensively synthesizes the voluminous literature on the role of the inflammatory process in wound repair, and the authors suggest that eliminating some physical components might ultimately improve tissue regeneration.

    Article  CAS  PubMed  Google Scholar 

  30. Martin, P. et al. Wound healing in the PU.1 null mouse — tissue repair is not dependent on inflammatory cells. Curr. Biol. 13, 1122–1128 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Werner, S. & Grose, R. Regulation of wound healing by growth factors and cytokines. Physiol. Rev. 83, 835–870 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Galiano, R. D. et al. Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. Am. J. Pathol. 164, 1935–1947 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bluff, J. E., Ferguson, M. W. J., O'Kane, S. & Ireland, G. Bone marrow-derived endothelial progenitor cells do not contribute significantly to new vessels during incisional wound healing. Exp. Hematol. 35, 500–506 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Opalenik, S. R. & Davidson, J. M. Fibroblast differentiation of bone marrow-derived cells during wound repair. FASEB J. 19, 1561–1563 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Werner, S., Krieg, T. & Smola, H. Keratinocyte–fibroblast interactions in wound healing. J. Invest. Dermatol. 127, 998–1008 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Szabowski, A. et al. c-Jun and JunB antagonistically control cytokine-regulated mesenchymal–epidermal interaction in skin. Cell 103, 745–755 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Lovvorn, H. N. et al. Relative distribution and crosslinking of collagen distinguish fetal from adult sheep wound repair. J. Pediatr. Surg. 34, 218–223 (1999).

    Article  PubMed  Google Scholar 

  38. Levenson, S. M. et al. The healing of rat skin wounds. Ann. Surg. 161, 293–308 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rubin, G. M. et al. Comparative genomics of the eukaryotes. Science 287, 2204–2215 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cole, J., Tsou, R., Wallace, K., Gibran, N. & Isik, F. Early gene expression profile of human skin to injury using high-density cDNA microarrays. Wound Repair Regen. 9, 360–370 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Cooper, L., Johnson, C., Burslem, F. & Martin, P. Wound healing and inflammation genes revealed by array analysis of 'macrophageless' PU.1 null mice. Genome Biol. 6, R5 (2005).

    Article  PubMed  Google Scholar 

  42. Chang, H. Y. et al. Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol. 2, E7 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Raja, K., Sivamani, M. S., Garcia, R. R. & Isseroff, R. R. Wound re-epithelialization: modulating keratinocyte migration in wound healing. Front. Biosci. 12, 2849–2868 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Chmielowiec, J. et al. c-Met is essential for wound healing in the skin. J. Cell Biol. 177, 151–162 (2007). This paper describes the essential role of the HGF receptor, MET, in wound re-epithelialization: cells deficient in this protein cannot contribute to the formation of a neo-epidermis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Werner, S. et al. The function of KGF in morphogenesis of epithelium and reepithelialization of wounds. Science 266, 819–822 (1994). This study was the first to use genetically modified mice to study wound repair.

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Braun, S., auf dem Keller, U., Steiling, H. & Werner, S. Fibroblast growth factors in epithelial repair and cytoprotection. Phil. Trans. R. Soc. Lond. B 359, 753–757 (2004).

    Article  CAS  Google Scholar 

  47. Jameson, J. et al. A role for skin γδ T cells in wound repair. Science 296, 747–749 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Shirakata, Y. et al. Heparin-binding EGF-like growth factor accelerates keratinocyte migration and skin wound healing. J. Cell Sci. 118, 2363–2370 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Schäfer, M. & Werner, S. Transcriptional control of wound repair. Annu. Rev. Cell Dev. Biol. 23, 69–92 (2007).

    Article  PubMed  CAS  Google Scholar 

  50. Li, G. et al. c-Jun is essential for organization of the epidermal leading edge. Dev. Cell 4, 865–877 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Sano, S. et al. Keratinocyte-specific ablation of Stat3 exhibits impaired skin remodeling, but does not affect skin morphogenesis. EMBO J. 18, 4657–4668 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Amendt, C., Mann, A., Schirmacher, P. & Blessing, M. Resistance of keratinocytes to TGFβ-mediated growth restriction and apoptosis induction accelerates re-epithelialization in skin wounds. J. Cell Sci. 115, 2189–2198 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Ashcroft, G. S. et al. Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nature Cell Biol. 1, 260–266 (1999). This paper describes the inhibitory role of TGF- β -mediated signalling in the wound repair process.

    Article  CAS  PubMed  Google Scholar 

  54. Werner, S. & Alzheimer, C. Roles of activin in tissue repair, fibrosis, and inflammatory disease. Cytokine Growth Factor Rev. 17, 157–171 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Chernyavsky, A. I., Arredondo, J., Wess, J. R., Karlsson, E. & Grando, S. A. Novel signaling pathways mediating reciprocal control of keratinocyte migration and wound epithelialization through M3 and M4 muscarinic receptors. J. Cell Biol. 166, 261–272 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pullar, C. E., Rizzo, A. & Isseroff, R. R. β-Adrenergic receptor antagonists accelerate skin wound healing: evidence for a catecholamine synthesis network in the epidermis. J. Biol. Chem. 281, 21225–21235 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Michalik, L. et al. Impaired skin wound healing in peroxisome proliferator-activated receptor (PPAR)α and PPARβ mutant mice. J. Cell Biol. 154, 799–814 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Icre, G., Wahli, W. & Michalik, L. Functions of the peroxisome proliferator-activated receptor (PPAR)α and β in skin homeostasis, epithelial repair, and morphogenesis. J. Invest. Dermatol. Symp. Proc. 11, 30–35 (2006).

    Article  CAS  Google Scholar 

  59. Di-Poï, N., Tan, N. S., Michalik, L., Wahli, W. & Desvergne, B. Antiapoptotic role of PPARβ in keratinocytes via transcriptional control of the Akt1 signaling pathway. Mol. Cell 10, 721–733 (2002).

    Article  PubMed  Google Scholar 

  60. Zhao, M. et al. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-γ and PTEN. Nature 442, 457–460 (2006). This paper describes a crucial role for electrical signals in the re-epithelialization of wounds.

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Claudinot, S. P., Nicolas, M., Oshima, H., Rochat, A. & Barrandon, Y. Long-term renewal of hair follicles from clonogenic multipotent stem cells. Proc. Natl Acad. Sci. USA 102, 14677–14682 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. Taylor, G., Lehrer, M. S., Jensen, P. J., Sun, T. T. & Lavker, R. M. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 102, 451–461 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Oshima, H., Rochat, A., Kedzia, C., Kobayashi, K. & Barrandon, Y. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell 104, 233–245 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Rochat, A., Kobayashi, K. & Barrandon, Y. Location of stem cells of human hair follicles by clonal analysis. Cell 76, 1063–1073 (1994).

    Article  CAS  PubMed  Google Scholar 

  65. Ito, M. et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nature Med. 11, 1351–1354 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Levy, V., Lindon, C., Harfe, B. D. & Morgan, B. A. Distinct stem cell populations regenerate the follicle and interfollicular epidermis. Dev. Cell 9, 855–861 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Clayton, E. et al. A single type of progenitor cell maintains normal epidermis. Nature 446, 185–189 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  68. Potten, C. S. & Booth, C. Keratinocyte stem cells: a commentary. J. Invest. Dermatol. 119, 888–899 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  70. Kiel, M. J. et al. Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU. Nature 449, 238–242 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. Vauclair, S. et al. Corneal epithelial cell fate is maintained during repair by Notch1 signaling via the regulation of vitamin A metabolism. Dev. Cell 13, 242–253 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Pearton, D. J., Yang, Y. & Dhouailly, D. Transdifferentiation of corneal epithelium into epidermis occurs by means of a multistep process triggered by dermal developmental signals. Proc. Natl Acad. Sci. USA 102, 3714–3719 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nishida, K. et al. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N. Engl. J. Med. 351, 1187–1196 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Mavilio, F. et al. Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells. Nature Med. 12, 1397–1402 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Metcalfe, F. & Ferguson, F. Skin stem and progenitor cells: using regeneration as a tissue-engineering strategy. Cell. Mol. Life Sci. 65, 24–32 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Metcalfe, A. D. & Ferguson, M. W. J. Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J. R. Soc. Interface 4, 413–437 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Ito, M. et al. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature 447, 316–320 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  78. Reynolds, A. J., Lawrence, C., Cserhalmi-Friedman, P. B., Christiano, A. M. & Jahoda, C. A. Trans-gender induction of hair follicles. Nature 402, 33–34 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  79. Fernandes, K. J. L. et al. A dermal niche for multipotent adult skin-derived precursor cells. Nature Cell Biol. 6, 1082–1093 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Wong, C. E. et al. Neural crest-derived cells with stem cell features can be traced back to multiple lineages in the adult skin. J. Cell Biol. 175, 1005–1015 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Blanpain, C., Lowry, W. E., Geoghegan, A., Polak, L. & Fuchs, E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118, 635–648 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Lin, R. Y. et al. Exogenous transforming growth factor-β amplifies its own expression and induces scar formation in a model of human fetal skin repair. Ann. Surg. 222, 146–154 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ghahary, A., Shen, Y. J., Scott, P. G., Gong, Y. & Tredget, E. E. Enhanced expression of mRNA for transforming growth factor-β, type I and type III procollagen in human post-burn hypertrophic scar tissues. J. Lab. Clin. Med. 122, 465–473 (1993).

    CAS  PubMed  Google Scholar 

  84. Ferguson, M. W. & O'Kane, S. Scar-free healing: from embryonic mechanisms to adult therapeutic intervention. Phil. Trans. R. Soc. Lond. B 359, 839–850 (2004).

    Article  CAS  Google Scholar 

  85. Arabi, S. et al. Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis. FASEB J. 21, 3250–3261 (2007)

    Article  CAS  Google Scholar 

  86. Lutolf, M. P. & Hubbell, J. A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature Biotechnol. 23, 47–55 (2005). This review comprehensively describes state-of-the-art synthetic biomaterials for guiding cell differentiation and tissue regeneration.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

G.C.G. and M.T.L. are supported by grants from the National Institutes of Health and the Oak Foundation. S.W. is supported by the Swiss Federal Institute of Technology Zürich (ETHZ), the Swiss National Science Foundation (FNSNF), the European Union and Oncosuisse. Y.B. is supported by the École Polytechnique Fédérale de Lausanne (EPFL), the Centre Hospitalier Universitaire Vaudois Lausanne (CHUV) and the European Consortium for Stem Cell Research (EuroStemCell).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Correspondence should be addressed to G.C.G. or M.T.L. (ggurtner@stanford.edu; longaker@stanford.edu).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gurtner, G., Werner, S., Barrandon, Y. et al. Wound repair and regeneration. Nature 453, 314–321 (2008). https://doi.org/10.1038/nature07039

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07039

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing