Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Magnetic fields at the solar wind termination shock


A transition between the supersonic solar wind and the subsonic heliosheath was observed by Voyager 1, but the expected termination shock was not seen owing to a gap in the telemetry1,2,3,4. Here we report observations of the magnetic field structure and dynamics of the termination shock, made by Voyager 2 on 31 August–1 September 2007 at a distance of 83.7 au from the Sun (1 au is the Earth–Sun distance). A single crossing of the shock was expected, with a boundary that was stable on a timescale of several days. But the data reveal a complex, rippled, quasi-perpendicular supercritical magnetohydrodynamic shock of moderate strength undergoing reformation on a scale of a few hours. The observed structure suggests the importance of ionized interstellar atoms (‘pickup protons’) at the shock.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Three crossings of the termination shock, illustrating reformation and the variability of its structure.
Figure 2: TS-3 is a supercritical quasi-perpendicular shock.
Figure 3: The internal structure of the ramp of TS-3.


  1. Burlaga, L. F. et al. Crossing the termination shock into the heliosheath: Magnetic fields. Science 309, 2027–2029 (2005)

    CAS  ADS  Article  Google Scholar 

  2. Decker, R. B. et al. Voyager 1 in the foreshock, termination shock, and heliosheath. Science 309, 2020–2024 (2005)

    CAS  ADS  Article  Google Scholar 

  3. Gurnett, D. A. & Kurth, W. S. Electron plasma oscillations upstream of the solar wind termination shock. Science 309, 2025–2027 (2005)

    CAS  ADS  Article  Google Scholar 

  4. Stone, E. C. et al. Voyager 1 explores the termination shock region and the heliosheath beyond. Science 309, 2017–2020 (2005)

    CAS  ADS  Article  Google Scholar 

  5. Winske, D. & Quest, K. B. Magnetic field and density fluctuations at perpendicular supercritical collisionless shocks. J. Geophys. Res. 93, 9681–9693 (1988)

    ADS  Article  Google Scholar 

  6. Lembege, B. et al. Selected problems in collisionless shock physics. Space Sci. Rev. 110, 161–226 (2004)

    ADS  Article  Google Scholar 

  7. Burgess, D. & Scholer, M. Shock front instability associated with reflected ions at the perpendicular shock. Phys. Plasmas 14, 012108 (2007)

    ADS  Article  Google Scholar 

  8. Behannon, K. et al. Magnetic field experiment for Voyager-1 and Voyager-2. Space Sci. Rev. 21, 235–257 (1977)

    ADS  Article  Google Scholar 

  9. Goodrich, C. C. in Collisionless Shocks in the Heliosphere: Reviews of Current Research (eds Tsurutani, B. T. & Stone, R. G.) 153–168 (Geophys. Monogr. Ser. Vol. 35, American Geophysical Union, Washington DC, 1985)

    Book  Google Scholar 

  10. Scholer, M., Shinohara, M. I. & Matsukiyo, S. Quasi-perpendicular shocks: Length scale of the cross-shock potential, shock reformation, and implications for shock surfing. J. Geophys. Res. 108 (A1). 10.1029/2002JA009515 (2003)

  11. Richardson, J. D., Kasper, J. C., Wang, C., Belcher, J. W. & Lazarus, A. J. Cool heliosheath plasma and deceleration of the upstream solar wind at the termination shock. Nature 10.1038/nature07024 (this issue)

  12. Biskamp, D. & Welter, H. Numerical studies of magnetosonic collisionless shock waves. Nucl. Fusion 12, 663–666 (1972)

    Article  Google Scholar 

  13. Phillips, P. E. & Robson, A. E. Influence of reflected ions on the magnetic structure of a collisionless shock. Phys. Rev. Lett. 29, 154–157 (1972)

    ADS  Article  Google Scholar 

  14. Leroy, M. Structure of perpendicular shocks in collisionless plasmas. Phys. Fluids 26, 2742–2753 (1983)

    ADS  Article  Google Scholar 

  15. Woods, L. C. On the structure of collisionless magneto plasma shock waves at supercritical Alfvén Mach numbers. J. Plasma Phys. 3, 435–442 (1969)

    ADS  Article  Google Scholar 

  16. Gurnett, D. A. & Kurth, W. S. Intense plasma waves at and near the solar wind termination shock. Nature 10.1038/nature07023 (this issue)

  17. Livesey, W. A. et al. ISEE 1 and 2 observations of magnetic field overshoots in quasi-perpendicular bow shocks. Geophys. Res. Lett. 9, 1037–1040 (1982)

    ADS  Article  Google Scholar 

  18. Decker, R. B. et al. Mediation of the solar wind termination shock by non-thermal ions. Nature 10.1038/nature07030 (this issue)

  19. Whang, Y. C., Burlaga, L. F. & Ness, N. F. Locations of the termination shock and heliopause. J. Geophys. Res. 100, 17015–17023 (1995)

    ADS  Article  Google Scholar 

  20. Zank, G. P. et al. Interstellar pickup ions and quasi-perpendicular shocks: Implications for the termination shock and interplanetary shocks. J. Geophys. Res. 101, 457–477 (1996)

    ADS  Article  Google Scholar 

  21. Lipatov, A. S. & Zank, G. P. Pickup ion acceleration at low β perpendicular shocks. Phys. Rev. Lett. 82, 3609–3612 (1999)

    CAS  ADS  Article  Google Scholar 

  22. Newbury, J. A., Russell, C. T. & Gedalin, M. The ramp widths of high-Mach-number quasi-perpendicular collisionless shocks. J. Geophys. Res. 103 (A12). 29581–29593 (1998)

    ADS  Article  Google Scholar 

  23. Lowe, R. E. & Burgess, D. The properties of rippling in quasi-perpendicular collisionless shock fronts. Ann. Geophys. 21, 1–9 (2003)

    Article  Google Scholar 

  24. Lembege, B. & Dawson, J. M. Self consistent study of a perpendicular collisionless and nonresistive shock. Phys. Fluids 30, 1767–1788 (1987)

    ADS  Article  Google Scholar 

  25. Lembege, B. & Savoini, P. Non-stationarity of a 2-D quasi-perpendicular supercritical collisionless shock by self-reformation. Phys. Fluids 4, 3533–3548 (1992)

    Article  Google Scholar 

  26. Bale, S. D. & Mozer, F. S. Measurement of large parallel and perpendicular electric fields on electron spatial scales in the terrestrial bow shock. Phys. Rev. Lett. 98, 205001 (2007)

    CAS  ADS  Article  Google Scholar 

Download references


We thank T. McClanahan and S. Kramer for support in the processing of the data. We also thank D. Berdischevsky for computing the instrument zero level corrections for the data in this paper, and for helping to solve the problems created by the erroneous decoding of a spacecraft systems command sent to Voyager 2 in 2006. N.F.N. was partially supported by a NASA grant to CUA.

Author information

Authors and Affiliations


Corresponding author

Correspondence to L. F. Burlaga.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Burlaga, L., Ness, N., Acuña, M. et al. Magnetic fields at the solar wind termination shock. Nature 454, 75–77 (2008).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing