Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Capture of hydroxymethylene and its fast disappearance through tunnelling

Abstract

Singlet carbenes exhibit a divalent carbon atom whose valence shell contains only six electrons, four involved in bonding to two other atoms and the remaining two forming a non-bonding electron pair. These features render singlet carbenes so reactive that they were long considered too short-lived for isolation and direct characterization. This view changed when it was found that attaching the divalent carbon atom to substituents that are bulky and/or able to donate electrons produces carbenes that can be isolated and stored1. N-heterocyclic carbenes are such compounds now in wide use, for example as ligands in metathesis catalysis2. In contrast, oxygen-donor-substituted carbenes are inherently less stable and have been less studied. The pre-eminent case is hydroxymethylene, H–C–OH; although it is the key intermediate in the high-energy chemistry of its tautomer formaldehyde3,4,5,6,7, has been implicated since 1921 in the photocatalytic formation of carbohydrates8, and is the parent of alkoxycarbenes that lie at the heart of transition-metal carbene chemistry, all attempts to observe this species or other alkoxycarbenes have failed9. However, theoretical considerations indicate that hydroxymethylene should be isolatable10. Here we report the synthesis of hydroxymethylene and its capture by matrix isolation. We unexpectedly find that H–C–OH rearranges to formaldehyde with a half-life of only 2 h at 11 K by pure hydrogen tunnelling through a large energy barrier in excess of 30 kcal mol–1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of hydroxymethylene (1).
Figure 2: Infrared spectra of 1 and [D 1 ]-1.
Figure 3: Ultraviolet/visible spectrum of 1 and [D 1 ]-1.
Figure 4: Schematic H–C–O–H potential energy hypersurface.

Similar content being viewed by others

References

  1. Bourissou, D., Guerret, O., Gabbaï, F. P. & Bertrand, G. Stable carbenes. Chem. Rev. 100, 39–91 (2000)

    Article  CAS  Google Scholar 

  2. Nolan, S. P. N-Heterocyclic Carbenes in Synthesis (Wiley-VCH, Weinheim, 2006)

    Book  Google Scholar 

  3. Kemper, M. J. H., Vandijk, J. M. F. & Buck, H. M. Ab initio calculation on the photochemistry of formaldehyde. The search for a hydroxycarbene intermediate. J. Am. Chem. Soc. 100, 7841–7846 (1978)

    Article  CAS  Google Scholar 

  4. Lucchese, R. R. & Schaefer, H. F. Metal-carbene complexes and the possible role of hydroxycarbene in formaldehyde laser photochemistry. J. Am. Chem. Soc. 100, 298–299 (1978)

    Article  CAS  Google Scholar 

  5. Hoffmann, M. R. & Schaefer, H. F. Hydroxycarbene (HCOH) and protonated formaldehyde: Two potentially observable interstellar molecules. Astrophys. J. 249, 563–565 (1981)

    Article  ADS  CAS  Google Scholar 

  6. Reid, D. L., Hernández-Trujillo, J. & Warkentin, J. A theoretical study of hydroxycarbene as a model for the homolysis of oxy- and dioxycarbenes. J. Phys. Chem. A 104, 3398–3405 (2000)

    Article  CAS  Google Scholar 

  7. Goddard, J. D. & Schaefer, H. F. The photodissociation of formaldehyde: Potential energy surface features. J. Chem. Phys. 70, 5117–5134 (1979)

    Article  ADS  CAS  Google Scholar 

  8. Baly, E. C. C., Heilbron, I. M. & Barker, W. F. CX.—Photocatalysis. Part I. The synthesis of formaldehyde and carbohydrates from carbon dioxide and water. J. Chem. Soc. Trans. 119, 1025–1035 (1921)

    Article  CAS  Google Scholar 

  9. Sierra, M. A. Di- and polymetallic heteroatom stabilized (Fischer) metal carbene complexes. Chem. Rev. 100, 3591–3637 (2000)

    Article  CAS  Google Scholar 

  10. Pau, C.-F. & Hehre, W. J. Relative thermochemical stabilities of hydroxymethylene and formaldehyde by ion cyclotron double resonance spectroscopy. J. Phys. Chem. 86, 1252–1253 (1982)

    Article  CAS  Google Scholar 

  11. Fischer, E. O. & Maasböl, A. On existence of tungsten carbonyl carbene complex. Angew. Chem. Int. Edn Engl. 3, 580–581 (1964)

    Article  Google Scholar 

  12. Weiner, B. R. & Rosenfeld, R. N. Pyrolysis of pyruvic acid in the gas phase. A study of the isomerization mechanism of a hydroxycarbene intermediate. J. Org. Chem. 48, 5362–5364 (1983)

    Article  CAS  Google Scholar 

  13. Rosenfeld, R. N. & Weiner, B. Energy disposal in the photofragmentation of pyruvic acid in the gas phase. J. Am. Chem. Soc. 105, 3485–3488 (1983)

    Article  CAS  Google Scholar 

  14. Jacox, M. E. The spectroscopy of molecular reaction intermediates trapped in the solid rare gases. Chem. Soc. Rev. 31, 108–115 (2002)

    Article  CAS  Google Scholar 

  15. Evangelista, F. A., Allen, W. D. & Schaefer, H. F. Coupling term derivation and general implementation of state-specific multireference coupled cluster theories. J. Chem. Phys. 127, 024102 (2007)

    Article  ADS  Google Scholar 

  16. Császár, A. G., Allen, W. D. & Schaefer, H. F. In pursuit of the ab initio limit for conformational energy prototypes. J. Chem. Phys. 108, 9751–9764 (1998)

    Article  ADS  Google Scholar 

  17. Schreiner, P. R. & Reisenauer, H. P. The “non-reaction” of ground-state triplet carbon atoms with water revisited. ChemPhysChem 7, 880–885 (2006)

    Article  CAS  Google Scholar 

  18. Venkateswarlu, P. & Gordy, W. Methyl alcohol II. Molecular structure. J. Chem. Phys. 23, 1200–1202 (1955)

    Article  ADS  CAS  Google Scholar 

  19. Reisenauer, H. P., Romanski, J., Mloston, G. & Schreiner, P. R. Dimethoxycarbene: Conformational analysis of a reactive intermediate. Eur. J. Org. Chem. 4813–4818 (2006)

  20. Sodeau, J. R. & Lee, E. K. C. Intermediacy of hydroxymethylene (HCOH) in the low temperature matrix photochemistry of formaldehyde. Chem. Phys. Lett. 57, 71–74 (1978)

    Article  ADS  CAS  Google Scholar 

  21. Miller, W. H. Tunneling corrections to unimolecular rate constants, with application to formaldehyde. J. Am. Chem. Soc. 101, 6810–6814 (1979)

    Article  CAS  Google Scholar 

  22. Miller, W. H., Handy, N. C. & Adams, J. E. Reaction path Hamiltonian for polyatomic molecules. J. Chem. Phys. 72, 99–112 (1980)

    Article  ADS  CAS  Google Scholar 

  23. Carrington, T., Hubbard, L. M., Schaefer, H. F. & Miller, W. H. Vinylidene: Potential energy surface and unimolecular reaction dynamics. J. Chem. Phys. 80, 4347–4354 (1984)

    Article  ADS  CAS  Google Scholar 

  24. Johnston, H. S. Gas Phase Reaction Rate Theory (Ronald Press, New York, 1966)

    Google Scholar 

  25. McMahon, R. J. & Chapman, O. L. Direct spectroscopic observation of intramolecular hydrogen shifts in carbenes. J. Am. Chem. Soc. 109, 683–692 (1987)

    Article  CAS  Google Scholar 

  26. Zuev, P. S. & Sheridan, R. S. Tunneling in the C–H insertion of a singlet carbene: tert-Butylchlorocarbene. J. Am. Chem. Soc. 116, 4123–4124 (1994)

    Article  CAS  Google Scholar 

  27. Pettersson, M. et al. Cistrans conversion of formic acid by dissipative tunneling in solid rare gases: Influence of environment on the tunneling rate. J. Chem. Phys. 117, 9095–9098 (2002)

    Article  ADS  CAS  Google Scholar 

  28. Maçôas, E. M. S., Khriachtchev, L., Pettersson, M., Fausto, R. & Räsänen, M. Rotational isomerism of acetic acid isolated in rare-gas matrices: Effect of medium and isotopic substitution on IR-induced isomerization quantum yield and cistrans tunneling rate. J. Chem. Phys. 121, 1331–1338 (2004)

    Article  ADS  Google Scholar 

  29. Zou, S., Bowman, J. M. & Brown, A. Full-dimensionality quantum calculations of acetylene–vinylidene isomerization. J. Chem. Phys. 118, 10012–10023 (2003)

    Article  ADS  CAS  Google Scholar 

  30. Mátyus, E., Czakó, G., Sutcliffe, B. T. & Császár, A. G. Vibrational energy levels with arbitrary potentials using the Eckart-Watson Hamiltonians and the discrete variable representation. J. Chem. Phys. 127, 084102 (2007)

    Article  ADS  Google Scholar 

  31. Allen, W. D., East, A. L. L. & Császár, A. G. in Structures and Conformations of Non-Rigid Molecules (eds Laane, J., Dakkouri, M., van der Veken, B. & Oberhammer, H.) 343–373 (NATO ASI Series C, Kluwer, Dordrecht, 1993)

    Book  Google Scholar 

  32. Császár, A. G. et al. in Spectroscopy from Space (eds Demaison, J., Sarka, K. & Cohen, E. A.) 317–339 (NATO Science Series II, Vol. 20, Kluwer, Dordrecht, 2001)

    Book  Google Scholar 

  33. Schuurman, M. S., Muir, S. R., Allen, W. D. & Schaefer, H. F. Toward subchemical accuracy in computational thermochemistry: Focal point analysis of the heat of formation of NCO and [H,N,C,O] isomers. J. Chem. Phys. 120, 11586–11599 (2004)

    Article  ADS  CAS  Google Scholar 

  34. Gonzales, J. M. et al. Definitive ab initio studies of model SN2 reactions CH3X + F (X = F, Cl, CN, OH, SH, NH2, PH2). Chem. Eur. J. 9, 2173–2192 (2003)

    Article  CAS  Google Scholar 

  35. Dunning, T. H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989)

    Article  ADS  CAS  Google Scholar 

  36. Woon, D. E. & Dunning, T. H. Jr. Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon. J. Chem. Phys. 103, 4572–4585 (1995)

    Article  ADS  CAS  Google Scholar 

  37. Perera, A. S. & Bartlett, R. J. Relativistic effects at the correlated level. An application to interhalogens. Chem. Phys. Lett. 216, 606–612 (1993)

    Article  CAS  Google Scholar 

  38. Balasubramanian, K. Relativistic Effects in Chemistry Part A, Theory and Techniques (Wiley, New York, 1997)

    Google Scholar 

  39. Tarczay, G., Császár, A. G., Klopper, W. & Quiney, H. M. Anatomy of relativistic energy corrections in light molecular systems. Mol. Phys. 99, 1769–1794 (2001)

    Article  ADS  CAS  Google Scholar 

  40. Bomble, Y. J., Stanton, J. F., Kállay, M. & Gauss, J. Coupled-cluster methods including noniterative corrections for quadruple excitations. J. Chem. Phys. 123, 054101 (2005)

    Article  ADS  Google Scholar 

  41. Kállay, M. & Gauss, J. Approximate treatment of higher excitations in coupled-cluster theory. J. Chem. Phys. 123, 214105 (2005)

    Article  ADS  Google Scholar 

  42. Evangelista, F. A., Allen, W. D. & Schaefer, H. F. High-order excitations in state-universal and state-specific multireference coupled cluster theories: Model systems. J. Chem. Phys. 125, 154113 (2006)

    Article  ADS  Google Scholar 

  43. Watson, J. K. G. in Vibrational Spectra and Structure, Vol. 6 (ed. Durig, J. R.) 1–89 (Elsevier, New York and Amsterdam, 1977)

    Google Scholar 

  44. Mills, I. M. in Molecular Spectroscopy: Modern Research (eds Rao, K. N. & Mathews, C. W.) 1–115 (Academic, New York, 1972)

    Google Scholar 

  45. Papoušek, D. & Aliev, M. R. Molecular Vibrational-Rotational Spectra (Elsevier, Amsterdam, 1982)

    Google Scholar 

  46. Nielsen, H. H. The vibration-rotation energies of molecules. Rev. Mod. Phys. 23, 90–136 (1951)

    Article  ADS  CAS  Google Scholar 

  47. Clabo, D. A., Allen, W. D., Remington, R. B., Yamaguchi, Y. & Schaefer, H. F. A systematic study of molecular vibrational anharmonicity and vibration-rotation interaction by self-consistent-field higher-derivative methods. Asymmetric top molecules. Chem. Phys. 123, 187–239 (1988)

    Article  CAS  Google Scholar 

  48. Allen, W. D. et al. A systematic study of molecular vibrational anharmonicity and vibration-rotation interaction by self-consistent-field higher-derivative methods. Linear polyatomic molecules. Chem. Phys. 145, 427–466 (1990)

    Article  ADS  CAS  Google Scholar 

  49. Schuurman, M. S., Allen, W. D. & Schaefer, H. F. The ab initio limit quartic force field of BH3 . J. Comput. Chem. 26, 1106–1112 (2005)

    Article  CAS  Google Scholar 

  50. DeKock, R. L. et al. The electronic structure and vibrational spectrum of trans-HNOO. J. Phys. Chem. A 108, 2893–2903 (2004)

    Article  CAS  Google Scholar 

  51. Czakó, G., Furtenbacher, T., Császár, A. G. & Szalay, V. Variational vibrational calculations using high-order anharmonic force fields. Mol. Phys. 102, 2411–2423 (2004)

    Article  ADS  Google Scholar 

  52. Fukui, K. A formulation of the reaction coordinate. J. Phys. Chem. 74, 4161–4163 (1970)

    Article  CAS  Google Scholar 

  53. Gonzales, C. & Schlegel, H. B. Reaction path following in mass-weighted internal coordinates. J. Phys. Chem. 94, 5523–5527 (1990)

    Article  Google Scholar 

  54. Allen, W. D., Bodi, A., Szalay, V. & Császár, A. G. Adiabatic approximations to internal rotation. J. Chem. Phys. 124, 224310 (2006)

    Article  ADS  Google Scholar 

  55. Liboff, R. L. Introductory Quantum Mechanics (Addison-Wesley, Reading, Massachusetts, 2003)

    MATH  Google Scholar 

  56. Razavy, M. Quantum Theory of Tunneling (World Scientific, Singapore, 2003)

    Book  Google Scholar 

  57. Gray, S. K., Miller, W. H., Yamaguchi, Y. & Schaefer, H. F. Reaction path Hamiltonian: Tunneling effects in the unimolecular isomerization HNC → HCN. J. Chem. Phys. 73, 2733–2739 (1980)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for support from the Fonds der Chemischen Industrie, the US Department of Energy, and the Hungarian Scientific Research Fund. We thank J. Bowman and W. Miller for comments on the tunnelling analysis.

Author Contributions P.R.S. and H.P.R. formulated the initial working hypothesis and provided, analysed and interpreted all experimental data. F.C.P. and A.C.S. performed all the electronic structure computations under the direction of W.D.A. The variational vibrational computations were executed by E.M. under the guidance of A.G.C. and W.D.A. The tunnelling analysis was performed by W.D.A., with input from F.C.P. and A.C.S. The manuscript was primarily written by P.R.S. and W.D.A.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter R. Schreiner or Wesley D. Allen.

Supplementary information

Supplementary information

The file contains Supplementary Figures and Legends 1 and 2; Supplementary Tables 1-10. The supplementary information contains two figures showing computed molecular structures with structural parameters. One supplementary experimental table summarizes the tunneling experiments at different temperatures and in different matrices. Another 9 supplementary tables contain computed data: xyz coordinates of all structures (supplementary tables 2 and 3) and energies (supplementary tables 4-10). (PDF 1347 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schreiner, P., Reisenauer, H., Pickard IV, F. et al. Capture of hydroxymethylene and its fast disappearance through tunnelling. Nature 453, 906–909 (2008). https://doi.org/10.1038/nature07010

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07010

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing