Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The branching programme of mouse lung development

Abstract

Mammalian lungs are branched networks containing thousands to millions of airways arrayed in intricate patterns that are crucial for respiration. How such trees are generated during development, and how the developmental patterning information is encoded, have long fascinated biologists and mathematicians. However, models have been limited by a lack of information on the normal sequence and pattern of branching events. Here we present the complete three-dimensional branching pattern and lineage of the mouse bronchial tree, reconstructed from an analysis of hundreds of developmental intermediates. The branching process is remarkably stereotyped and elegant: the tree is generated by three geometrically simple local modes of branching used in three different orders throughout the lung. We propose that each mode of branching is controlled by a genetically encoded subroutine, a series of local patterning and morphogenesis operations, which are themselves controlled by a more global master routine. We show that this hierarchical and modular programme is genetically tractable, and it is ideally suited to encoding and evolving the complex networks of the lung and other branched organs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Branching morphogenesis of the mouse bronchial tree.
Figure 2: Branching modes in lung development.
Figure 3: Deployment of branching modes.
Figure 4: Branching errors.
Figure 5: Genetic control of branch pattern and lineage.
Figure 6: A formal model of the lung branching programme.

Similar content being viewed by others

References

  1. Weibel, E. R. The Pathway for Oxygen (Harvard Univ. Press, Cambridge, Massachusetts, 1984)

    Google Scholar 

  2. West, G. B., Brown, J. H. & Enquist, B. J. A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997)

    Article  CAS  Google Scholar 

  3. Bejan, A. Shape and Structure, From Engineering to Nature (Cambridge Univ. Press, Cambridge, 2000)

    MATH  Google Scholar 

  4. Mauroy, B., Filoche, M., Weibel, E. R. & Sapoval, B. An optimal bronchial tree may be dangerous. Nature 427, 633–636 (2004)

    Article  ADS  CAS  Google Scholar 

  5. Aeby, C. Der Bronchialbaum der Säugethiere und des Menschen, nebst Bemerkungen über den Bronchialbaum der Vögel und Reptilien (Engelmann, Leipzig, 1880)

    Google Scholar 

  6. Boyden, E. A. Segmental Anatomy of the Lungs; a Study of the Patterns of the Segmental Bronchi and Related Pulmonary Vessels (McGraw-Hill, New York, 1955)

    Google Scholar 

  7. Weibel, E. R. & Gomez, D. M. Architecture of the human lung. Science 137, 577–585 (1962)

    Article  ADS  CAS  Google Scholar 

  8. Weibel, E. R. Morphometry of the Human Lung (Academic, New York, 1963)

    Book  Google Scholar 

  9. Metzger, R. J. & Krasnow, M. A. Genetic control of branching morphogenesis. Science 284, 1635–1639 (1999)

    Article  CAS  Google Scholar 

  10. Meinhardt, H. Morphogenesis of lines and nets. Differentiation 6, 117–123 (1976)

    Article  CAS  Google Scholar 

  11. Mandelbrot, B. B. The Fractal Geometry of Nature (Freeman, New York, 1983)

    Book  Google Scholar 

  12. Nelson, T. R. & Manchester, D. K. Modeling of lung morphogenesis using fractal geometries. IEEE Trans. Med. Imaging 7, 321–327 (1988)

    Article  CAS  Google Scholar 

  13. Prusinkiewicz, P. & Lindenmayer, A. The Algorithmic Beauty of Plants (Springer, New York, 1990)

    Book  Google Scholar 

  14. Kitaoka, H., Takaki, R. & Suki, B. A three-dimensional model of the human airway tree. J. Appl. Physiol. 87, 2207–2217 (1999)

    Article  CAS  Google Scholar 

  15. Tawhai, M., Pullan, A. & Hunter, P. Generation of an anatomically based three-dimensional model of the conducting airways. Ann. Biomed. Eng. 28, 793–802 (2000)

    Article  Google Scholar 

  16. Miura, T. Modeling lung branching morphogenesis. Curr. Top. Dev. Biol. 81, 291–310 (2007)

    Article  Google Scholar 

  17. Tebockhorst, S., Lee, D., Wexler, A. S. & Oldham, M. J. Interaction of epithelium with mesenchyme affects global features of lung architecture: a computer model of development. J. Appl. Physiol. 102, 294–305 (2007)

    Article  Google Scholar 

  18. Cardoso, W. V. & Lu, J. Regulation of early lung morphogenesis: questions, facts and controversies. Development 133, 1611–1624 (2006)

    Article  CAS  Google Scholar 

  19. His, W. Zur Bildungsgeschichte der Lungen beim menschlichen Embryo. Arch. Anat. Entwicklungsgeschichte 1887, 89–106 (1887)

    Google Scholar 

  20. Flint, J. M. Development of the lungs. Am. J. Anat. 6, 1–138 (1906)

    Article  Google Scholar 

  21. Heiss, R. Zur Entwicklung und Anatomie der menschlichen Lunge. Arch. Anat. Physiol. Anatomische Abteilung 1919, 1–129 (1919)

    Google Scholar 

  22. Borghese, E. The development in vitro of the submandibular and sublingual glands of Mus musculus . J. Anat. 84, 287–302 (1950)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Alescio, T. Osservazioni su culture organotipiche di polmone embrionale di topo. Arch. Ital. Anat. Embriol. 65, 323–363 (1960)

    CAS  PubMed  Google Scholar 

  24. Massoud, E. A. et al. In vitro branching morphogenesis of the fetal rat lung. Pediatr. Pulmonol. 15, 89–97 (1993)

    Article  CAS  Google Scholar 

  25. Watanabe, T. & Costantini, F. Real-time analysis of ureteric bud branching morphogenesis in vitro . Dev. Biol. 271, 98–108 (2004)

    Article  CAS  Google Scholar 

  26. Supp, D. M., Witte, D. P., Potter, S. S. & Brueckner, M. Mutation of an axonemal dynein affects left–right asymmetry in inversus viscerum mice. Nature 389, 963–966 (1997)

    Article  ADS  CAS  Google Scholar 

  27. Hummel, K. P. & Chapman, D. B. Visceral inversion and associated anomalies in the mouse. J. Hered. 50, 9–13 (1959)

    Article  Google Scholar 

  28. Shim, K., Minowada, G., Coling, D. E. & Martin, G. R. Sprouty2, a mouse deafness gene, regulates cell fate decisions in the auditory sensory epithelium by antagonizing FGF signaling. Dev. Cell 8, 553–564 (2005)

    Article  CAS  Google Scholar 

  29. Hacohen, N. et al. Sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell 92, 253–263 (1998)

    Article  CAS  Google Scholar 

  30. Minowada, G. et al. Vertebrate Sprouty genes are induced by FGF signaling and can cause chondrodysplasia when overexpressed. Development 126, 4465–4475 (1999)

    CAS  PubMed  Google Scholar 

  31. Eppig, J. T. et al. Mouse Genome Databasehttp://www.informatics.jax.org〉 (2005)

    Google Scholar 

  32. Hogan, B. L. Morphogenesis. Cell 96, 225–233 (1999)

    Article  CAS  Google Scholar 

  33. Warburton, D. et al. Molecular mechanisms of early lung specification and branching morphogenesis. Pediatr. Res. 57, 26R–37R (2005)

    Article  Google Scholar 

  34. Maeda, Y., Dave, V. & Whitsett, J. A. Transcriptional control of lung morphogenesis. Physiol. Rev. 87, 219–244 (2007)

    Article  CAS  Google Scholar 

  35. al-Awqati, Q. & Goldberg, M. R. Architectural patterns in branching morphogenesis in the kidney. Kidney Int. 54, 1832–1842 (1998)

    Article  CAS  Google Scholar 

  36. Lu, P., Sternlicht, M. D. & Werb, Z. Comparative mechanisms of branching morphogenesis in diverse systems. J. Mammary Gland Biol. Neoplasia 11, 213–228 (2006)

    Article  Google Scholar 

  37. Thomson, A. A. & Marker, P. C. Branching morphogenesis in the prostate gland and seminal vesicles. Differentiation 74, 382–392 (2006)

    Article  CAS  Google Scholar 

  38. Shubin, N. H. & Alberch, P. A morphogenetic approach to the origin and basic organization of the tetrapod limb. Evol. Biol. 20, 319–387 (1986)

    Google Scholar 

  39. Shubin, N., Tabin, C. & Carroll, S. Fossils, genes and the evolution of animal limbs. Nature 388, 639–648 (1997)

    Article  ADS  CAS  Google Scholar 

  40. Prusinkiewicz, P. et al. Evolution and development of inflorescence architectures. Science 316, 1452–1456 (2007)

    Article  ADS  CAS  Google Scholar 

  41. Wells, L. J. & Boyden, E. A. The development of the bronchopulmonary segments in human embryos of horizons XVII to XIX. Am. J. Anat. 95, 163–201 (1954)

    Article  CAS  Google Scholar 

  42. Hirai, Y., Nose, A., Kobayashi, S. & Takeichi, M. Expression and role of E- and P-cadherin adhesion molecules in embryonic histogenesis. I. Lung epithelial morphogenesis. Development 105, 263–270 (1989)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Krasnow laboratory and P. Brown, D. Brutlag, N. Hacohen, D. Kingsley, L. Mündermann, J. Spudich and E. Storm for advice and discussion, and M. Kumar and M. Petersen for help with preparing the figures. This work was funded by grants from National Institutes of Health (to M.A.K. and G.R.M.). M.A.K. is an investigator of the Howard Hughes Medical Institute.

Author Contributions R.J.M. and M.A.K. conceived the experiments. R.J.M. designed and performed experiments and collected data. O.D.K. and G.R.M. contributed to conception and design of the Spry2 experiments and provided genotyped Spry2 embryos. R.J.M. and M.A.K. analysed the data and wrote the manuscript. All authors discussed results and edited the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ross J. Metzger or Mark A. Krasnow.

Supplementary information

Supplementary Figure 1

The file contains Supplementary Figure 1, showing the branching lineage of the mouse bronchial tree as 29 separate panels which can be assembled into a single lineage figure. (PDF 3240 kb)

Supplementary Figure 1'

This file contains Supplementary Figure 1', the aligned and assembled branching lineage of the mouse bronchial tree. (PDF 2881 kb)

Legend to Supplementary Figures 1 and 1'

This file contains the Legend to Supplementary Figures 1 and 1'. (PDF 125 kb)

Supplementary Figures 2-5

This file contains Supplementary Figures 2-5 with Legends. (PDF 2087 kb)

Additional details

This file contains additional details of the immunostaining protocols used in this study. (PDF 174 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metzger, R., Klein, O., Martin, G. et al. The branching programme of mouse lung development. Nature 453, 745–750 (2008). https://doi.org/10.1038/nature07005

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07005

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing