Abstract
Dopamine orchestrates motor behaviour and reward-driven learning. Perturbations of dopamine signalling have been implicated in several neurological and psychiatric disorders, and in drug addiction. The actions of dopamine are mediated in part by the regulation of gene expression in the striatum, through mechanisms that are not fully understood. Here we show that drugs of abuse, as well as food reinforcement learning, promote the nuclear accumulation of 32-kDa dopamine-regulated and cyclic-AMP-regulated phosphoprotein (DARPP-32). This accumulation is mediated through a signalling cascade involving dopamine D1 receptors, cAMP-dependent activation of protein phosphatase-2A, dephosphorylation of DARPP-32 at Ser 97 and inhibition of its nuclear export. The nuclear accumulation of DARPP-32, a potent inhibitor of protein phosphatase-1, increases the phosphorylation of histone H3, an important component of nucleosomal response. Mutation of Ser 97 profoundly alters behavioural effects of drugs of abuse and decreases motivation for food, underlining the functional importance of this signalling cascade.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Schultz, W. & Dickinson, A. Neuronal coding of prediction errors. Annu. Rev. Neurosci. 23, 473–500 (2000)
Berke, J. D. & Hyman, S. E. Addiction, dopamine, and the molecular mechanisms of memory. Neuron 25, 515–532 (2000)
Di Chiara, G. Drug addiction as dopamine-dependent associative learning disorder. Eur. J. Pharmacol. 375, 13–30 (1999)
Everitt, B. J. & Robbins, T. W. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nature Neurosci. 8, 1481–1489 (2005)
Nicola, S. M., Surmeier, J. & Malenka, R. C. Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu. Rev. Neurosci. 23, 185–215 (2000)
Reynolds, J. N. & Wickens, J. R. Dopamine-dependent plasticity of corticostriatal synapses. Neural Netw. 15, 507–521 (2002)
Hyman, S. E., Malenka, R. C. & Nestler, E. J. Neural mechanisms of addiction: the role of reward-related learning and memory. Annu. Rev. Neurosci. 29, 565–598 (2006)
Walaas, S. I., Aswad, D. W. & Greengard, P. A dopamine- and cyclic AMP-regulated phosphoprotein enriched in dopamine-innervated brain regions. Nature 301, 69–71 (1983)
Svenningsson, P. et al. DARPP-32: an integrator of neurotransmission. Annu. Rev. Pharmacol. Toxicol. 44, 269–296 (2004)
Ouimet, C. C. et al. DARPP-32, a dopamine- and adenosine 3′:5′-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. III. Immunocytochemical localization. J. Neurosci. 4, 111–124 (1984)
Hemmings, H. C., Greengard, P., Tung, H. Y. L. & Cohen, P. DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1. Nature 310, 503–505 (1984)
Fienberg, A. A. et al. DARPP-32: Regulator of the efficacy of dopaminergic neurotransmission. Science 281, 838–839 (1998)
Valjent, E. et al. Regulation of a protein phosphatase cascade allows convergent dopamine and glutamate signals to activate ERK in the striatum. Proc. Natl Acad. Sci. USA 102, 491–496 (2005)
Brami-Cherrier, K. et al. Parsing molecular and behavioral effects of cocaine in mitogen- and stress-activated protein kinase-1-deficient mice. J. Neurosci. 25, 11444–11454 (2005)
Ouimet, C. C. & Greengard, P. Distribution of DARPP-32 in the basal ganglia: An electron microscopic study. J. Neurocytol. 19, 39–52 (1990)
Pontieri, F. E., Tanda, G. & Di Chiara, G. Intravenous cocaine, morphine, and amphetamine preferentially increase extracellular dopamine in the ‘shell’ as compared with the ‘core’ of the rat nucleus accumbens. Proc. Natl Acad. Sci. USA 92, 12304–12308 (1995)
Gong, S. et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425, 917–925 (2003)
Nishi, K. et al. Leptomycin B targets a regulatory cascade of crm1, a fission yeast nuclear protein, involved in control of higher order chromosome structure and gene expression. J. Biol. Chem. 269, 6320–6324 (1994)
Henderson, B. R. & Eleftheriou, A. A comparison of the activity, sequence specificity, and CRM1-dependence of different nuclear export signals. Exp. Cell Res. 256, 213–224 (2000)
Stedman, D. R. et al. Cytoplasmic localization of calcium/calmodulin-dependent protein kinase I-α depends on a nuclear export signal in its regulatory domain. FEBS Lett. 566, 275–280 (2004)
Rastogi, S., Joshi, B., Fusaro, G. & Chellappan, S. Camptothecin induces nuclear export of prohibitin preferentially in transformed cells through a CRM-1-dependent mechanism. J. Biol. Chem. 281, 2951–2959 (2006)
Girault, J. A. et al. Phosphorylation of DARPP-32, a dopamine- and cAMP-regulated phosphoprotein, by casein kinase II. J. Biol. Chem. 264, 21748–21759 (1989)
Sarno, S. et al. Selectivity of 4,5,6,7-tetrabromobenzotriazole, an ATP site-directed inhibitor of protein kinase CK2 (‘casein kinase-2’). FEBS Lett. 496, 44–48 (2001)
Nishi, A. et al. Amplification of dopaminergic signaling by a positive feedback loop. Proc. Natl Acad. Sci. USA 97, 12840–12845 (2000)
Nishi, A., Snyder, G. L., Nairn, A. C. & Greengard, P. Role of calcineurin and protein phosphatase-2A in the regulation of DARPP-32 dephosphorylation in neostriatal neurons. J. Neurochem. 72, 2015–2021 (1999)
Usui, H. et al. Activation of protein phosphatase 2A by cAMP-dependent protein kinase-catalyzed phosphorylation of the 74-kDa B″ (δ) regulatory subunit in vitro and identification of the phosphorylation sites. FEBS Lett. 430, 312–316 (1998)
Ahn, J. H. et al. Protein kinase A activates protein phosphatase 2A by phosphorylation of the B56δ subunit. Proc. Natl Acad. Sci. USA 104, 2979–2984 (2007)
Nowak, S. J. & Corces, V. G. Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet. 20, 214–220 (2004)
Salvador, L. M. et al. Follicle-stimulating hormone stimulates protein kinase A-mediated histone H3 phosphorylation and acetylation leading to select gene activation in ovarian granulosa cells. J. Biol. Chem. 276, 40146–40155 (2001)
Murnion, M. E. et al. Chromatin-associated protein phosphatase 1 regulates aurora-B and histone H3 phosphorylation. J. Biol. Chem. 276, 26656–26665 (2001)
Hsu, J. Y. et al. Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell 102, 279–291 (2000)
Bode, A. M. & Dong, Z. G. Inducible covalent postranslational modification of histone H3. Sci. STKE 281, 1–12 (2005)
Levenson, J. M. & Sweatt, J. D. Epigenetic mechanisms: a common theme in vertebrate and invertebrate memory formation. Cell. Mol. Life Sci. 63, 1009–1016 (2006)
Kumar, A. et al. Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron 48, 303–314 (2005)
Poon, I. K. & Jans, D. A. Regulation of nuclear transport: central role in development and transformation? Traffic 6, 173–186 (2005)
Panasyuk, G. et al. Nuclear export of S6K1 II is regulated by protein kinase CK2 phosphorylation at Ser-17. J. Biol. Chem. 281, 31188–31201 (2006)
Alt, J. R., Cleveland, J. L., Hannink, M. & Diehl, J. A. Phosphorylation-dependent regulation of cyclin D1 nuclear export and cyclin D1-dependent cellular transformation. Genes Dev. 14, 3102–3114 (2000)
Beaulieu, J. M. et al. An Akt/β-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 122, 261–273 (2005)
Nestler, E. J. Molecular basis of long-term plasticity underlying addiction. Nature Rev. Neurosci. 2, 119–128 (2001)
Svenningsson, P. et al. Diverse psychotomimetics act through a common signaling pathway. Science 302, 1412–1415 (2003)
Zhang, Y. et al. Cocaine self-administration in mice is inversely related to phosphorylation at Thr34 (protein kinase A site) and Ser130 (kinase CK1 site) of DARPP-32. J. Neurosci. 26, 2645–2651 (2006)
Drago, J. et al. Altered striatal function in a mutant mouse lacking D1A dopamine receptors. Proc. Natl Acad. Sci. USA 91, 12564–12568 (1994)
Vanderschuren, L. J. et al. A single exposure to amphetamine is sufficient to induce long-term behavioral, neuroendocrine, and neurochemical sensitization in rats. J. Neurosci. 19, 9579–9586 (1999)
Valjent, E. et al. Involvement of the extracellular signal-regulated kinase cascade for cocaine-rewarding properties. J. Neurosci. 20, 8701–8709 (2000)
Acknowledgements
We thank M. Lambert for her help with time-lapse video; P. Ingrassia and P. Bernard for their help with mutant mice; and M. R. Picciotto, S. Cottecchia, J. P. Hornung, R. Luedtke, M. Takeda and Intracellular Therapies Inc. for reagents. This work was supported by Inserm, and by grants from Agence Nationale de la Recherche (05-NEUR-020-01), Fondation Bettencourt-Schueller (Coup d’élan) and Association pour la Recherche contre le Cancer (ARC-3118 and -7905) to J.A.G., from Fondation pour la Recherche Médicale (FRM) to D.H., a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science to A.N., and grants from the National Institute on Drug Abuse (DA10044), the National Institute of Mental Health (MH74866), the US Department of Defense (W81XWH-05-1-0146), the Picower Foundation, the Michael Stern Parkinson’s Research Foundation and the US Army Medical Research Acquisition Activity (DAMD17-02-1-0705 and W81XWH-05-1-0146) to P.G. and A.C.N. A.S. was supported by Mission Interministérielle de Lutte contre la Drogue et la Toxicomanie and FRM, and J.B.G. by FRM.
Author Contributions A.S. and Mi.M. performed experiments in vivo and in transfected cultures, immunofluorescence and molecular biology. E.V. conducted in vivo, behavioural and immunohistofluorescence experiments. A.S., E.V. and Mi.M. prepared the figures. A.N. performed the slice experiments, J.H.A. the phosphatase experiments, and Ma.M. the incentive learning experiments. J.B.G. and A.G.C. contributed to in vivo and immunohistofluorescence experiments, and K.B.C. and H.E. to cell culture experiments. O.F. provided advice and reagents. A.S., A.C.N., P.G., D.H. and J.A.G. were involved in the study design and manuscript writing. J.A.G. coordinated the study. All authors analysed data they generated, discussed results and commented on the manuscript. A.S., E.V. and Mi.M. contributed equally to this work.
Author information
Authors and Affiliations
Corresponding author
Supplementary information
Supplementary Information
The file contains Supplementary Figures 1-13 with Legends and Supplementary Table 1 with ANOVA analysis of results presented in Figures 1-4 (PDF 5984 kb)
Supplementary Movie
The file contains Supplementary Movie 1 with time lapse video of the nuclear translocation of DARPP-32-GFP in transfected a striatal neuron treated with leptomycin B (10 ng/ml). (AVI 6360 kb)
Rights and permissions
About this article
Cite this article
Stipanovich, A., Valjent, E., Matamales, M. et al. A phosphatase cascade by which rewarding stimuli control nucleosomal response. Nature 453, 879–884 (2008). https://doi.org/10.1038/nature06994
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature06994
This article is cited by
-
Adaptive control of synaptic plasticity integrates micro- and macroscopic network function
Neuropsychopharmacology (2023)
-
Phosphodiesterase-4 Inhibition in Parkinson’s Disease: Molecular Insights and Therapeutic Potential
Cellular and Molecular Neurobiology (2023)
-
Microfluidics delivery of DARPP-32 into HeLa cells maintains viability for in-cell NMR spectroscopy
Communications Biology (2022)
-
GABAB receptor signaling in the caudate putamen is involved in binge-like consumption during a high fat diet in mice
Scientific Reports (2021)
-
Transcriptional signatures in prefrontal cortex confer vulnerability versus resilience to food and cocaine addiction-like behavior
Scientific Reports (2021)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.